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Research Questions

e To what extent does translation quality de-
pend on individual encoder heads?

e Do individual encoder heads play consistent
and interpretable roles? If so, which are the
most important ones for translation quality?

e Which types of model attention (encoder
self-attention, decoder self-attention or
decoder-encoder attention) are most sensitive
to the number of attention heads and on
which layers?

e Can we significantly reduce the number of
attention heads while preserving translation
quality?



ldentify Important Heads

e Confident heads

e Usually assign a high proportion of its at- tention to a
single token

e Layer-wise relevance propagation (LRP)

e Contribute most to the top-1 logit predicted by the
model



ldentifying Important Heads
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e The relevance of a head as computed by LRP agrees to a
reasonable extent with its confidence.



Characterizing heads

Head functions

e Positional heads

0.8
(®)
©

0.6 O
(®)
(v}

0.4

]
O

e Syntactic heads
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e Rare word heads




Pruning Attention Heads

 \We have identified certain functions of the most relevant
heads at each layer and showed that to a large extent
they are interpretable

e \What of the remaining heads?



LO-norm
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Rational

e Can we trust neural models?

e What if the model could provide us the most important
parts of the document, as a justification for its prediction?



Rational
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LO-norm

Zi|lx ~ Bern(g;(x; ¢))
Y|z, z ~ Cat(f(z ® 2;0))



The Trick

e \We start from a distribution over the open interval (O, 1)
e Closed form solution for P(not zero)
e Most probability lies on the two ends

* We then stretch its support froml<0Otor > 1 in orderto
include {0} and {1}

 We collapse the probability mass over the interval (|, O] to

{0}, and similarly, the probability mass over the interval [1,
r) to {1}
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Kumaraswamy
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