

Analyzing Multi-Head Self-Attention:
Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned

Elena Voita
Yandex, Russia

University of Amsterdam, Netherlands
lena-voita@yandex-team.ru

David Talbot
Yandex, Russia

talbot@yandex-team.ru

Fedor Moiseev
Yandex, Russia

Moscow Institute of Physics and Technology, Russia
femoiseev@yandex-team.ru

Rico Sennrich
University of Edinburgh, Scotland
University of Zurich, Switzerland
rico.sennrich@ed.ac.uk

Ivan Titov
University of Edinburgh, Scotland

University of Amsterdam, Netherlands
ititov@inf.ed.ac.uk

Abstract

Multi-head self-attention is a key component
of the Transformer, a state-of-the-art architec-
ture for neural machine translation. In this
work we evaluate the contribution made by in-
dividual attention heads in the encoder to the
overall performance of the model and analyze
the roles played by them. We find that the
most important and confident heads play con-
sistent and often linguistically-interpretable
roles. When pruning heads using a method
based on stochastic gates and a differentiable
relaxation of the L0 penalty, we observe that
specialized heads are last to be pruned. Our
novel pruning method removes the vast major-
ity of heads without seriously affecting perfor-
mance. For example, on the English-Russian
WMT dataset, pruning 38 out of 48 encoder
heads results in a drop of only 0.15 BLEU.

1 Introduction

The Transformer (Vaswani et al., 2017) has be-
come the dominant modeling paradigm in neu-
ral machine translation. It follows the encoder-
decoder framework using stacked multi-head self-
attention and fully connected layers. Multi-head
attention was shown to make more efficient use of
the model’s capacity: performance of the model
with 8 heads is almost 1 BLEU point higher than
that of a model of the same size with single-head
attention (Vaswani et al., 2017). The Transformer
achieved state-of-the-art results in recent shared
translation tasks (Bojar et al., 2018; Niehues et al.,
2018). Despite the model’s widespread adoption

and recent attempts to investigate the kinds of in-
formation learned by the model’s encoder (Ra-
ganato and Tiedemann, 2018), the analysis of
multi-head attention and its importance for trans-
lation is challenging. Previous analysis of multi-
head attention either assumed that all heads are
equally important by looking at the average of
attention weights over all heads at a given posi-
tion or focused only on the maximum attention
weights (Voita et al., 2018; Tang et al., 2018). We
argue that this obscures the roles played by indi-
vidual heads which, as we show, influence the gen-
erated translations to differing extents. We attempt
to answer the following questions:

• To what extent does translation quality de-
pend on individual encoder heads?

• Do individual encoder heads play consistent
and interpretable roles? If so, which are the
most important ones for translation quality?

• Which types of model attention (encoder
self-attention, decoder self-attention or
decoder-encoder attention) are most sensitive
to the number of attention heads and on
which layers?

• Can we significantly reduce the number of
attention heads while preserving translation
quality?

We start by identifying the most important
heads in each encoder layer using layer-wise rele-
vance propagation (Ding et al., 2017). For heads

ar
X

iv
:1

90
5.

09
41

8v
1

 [c
s.C

L]
 2

3
M

ay
 2

01
9

Research Questions

Analyzing Multi-Head Self-Attention:
Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned

Elena Voita
Yandex, Russia

University of Amsterdam, Netherlands
lena-voita@yandex-team.ru

David Talbot
Yandex, Russia

talbot@yandex-team.ru

Fedor Moiseev
Yandex, Russia

Moscow Institute of Physics and Technology, Russia
femoiseev@yandex-team.ru

Rico Sennrich
University of Edinburgh, Scotland
University of Zurich, Switzerland
rico.sennrich@ed.ac.uk

Ivan Titov
University of Edinburgh, Scotland

University of Amsterdam, Netherlands
ititov@inf.ed.ac.uk

Abstract

Multi-head self-attention is a key component
of the Transformer, a state-of-the-art architec-
ture for neural machine translation. In this
work we evaluate the contribution made by in-
dividual attention heads in the encoder to the
overall performance of the model and analyze
the roles played by them. We find that the
most important and confident heads play con-
sistent and often linguistically-interpretable
roles. When pruning heads using a method
based on stochastic gates and a differentiable
relaxation of the L0 penalty, we observe that
specialized heads are last to be pruned. Our
novel pruning method removes the vast major-
ity of heads without seriously affecting perfor-
mance. For example, on the English-Russian
WMT dataset, pruning 38 out of 48 encoder
heads results in a drop of only 0.15 BLEU.

1 Introduction

The Transformer (Vaswani et al., 2017) has be-
come the dominant modeling paradigm in neu-
ral machine translation. It follows the encoder-
decoder framework using stacked multi-head self-
attention and fully connected layers. Multi-head
attention was shown to make more efficient use of
the model’s capacity: performance of the model
with 8 heads is almost 1 BLEU point higher than
that of a model of the same size with single-head
attention (Vaswani et al., 2017). The Transformer
achieved state-of-the-art results in recent shared
translation tasks (Bojar et al., 2018; Niehues et al.,
2018). Despite the model’s widespread adoption

and recent attempts to investigate the kinds of in-
formation learned by the model’s encoder (Ra-
ganato and Tiedemann, 2018), the analysis of
multi-head attention and its importance for trans-
lation is challenging. Previous analysis of multi-
head attention either assumed that all heads are
equally important by looking at the average of
attention weights over all heads at a given posi-
tion or focused only on the maximum attention
weights (Voita et al., 2018; Tang et al., 2018). We
argue that this obscures the roles played by indi-
vidual heads which, as we show, influence the gen-
erated translations to differing extents. We attempt
to answer the following questions:

• To what extent does translation quality de-
pend on individual encoder heads?

• Do individual encoder heads play consistent
and interpretable roles? If so, which are the
most important ones for translation quality?

• Which types of model attention (encoder
self-attention, decoder self-attention or
decoder-encoder attention) are most sensitive
to the number of attention heads and on
which layers?

• Can we significantly reduce the number of
attention heads while preserving translation
quality?

We start by identifying the most important
heads in each encoder layer using layer-wise rele-
vance propagation (Ding et al., 2017). For heads

ar
X

iv
:1

90
5.

09
41

8v
1

 [c
s.C

L]
 2

3
M

ay
 2

01
9

Identify Important Heads

• Confident heads

• Usually assign a high proportion of its at- tention to a
single token

• Layer-wise relevance propagation (LRP)

• Contribute most to the top-1 logit predicted by the
model

Identifying Important Heads

(a) LRP (b) confidence (c) head functions

Figure 1: Importance (according to LRP), confidence, and function of self-attention heads. In each layer, heads
are sorted by their relevance according to LRP. Model trained on 6m OpenSubtitles EN-RU data.

(a) LRP (EN-DE) (b) head functions

(c) LRP (EN-FR) (d) head functions

Figure 2: Importance (according to LRP) and function
of self-attention heads. In each layer, heads are sorted
by their relevance according to LRP. Models trained on
2.5m WMT EN-DE (a, b) and EN-FR (c, d).

4 Identifying Important Heads

Previous work analyzing how representations are
formed by the Transformer’s multi-head attention
mechanism have implicitly assumed that all heads
are equally important by taking either the aver-
age or the maximum attention weights over all
heads (Voita et al., 2018; Tang et al., 2018). We
argue that this obscures the roles played by indi-
vidual heads which, as we will show, influence the
generated translations to differing extents.

We define the “confidence” of a head as the av-
erage of its maximum attention weight excluding
the end of sentence symbol.1 A confident head is
one that usually assigns a high proportion of its at-
tention to a single token. Intuitively, we might ex-
pect confident heads to be important to the trans-
lation task.

Layer-wise relevance propagation (LRP) (Ding
et al., 2017) is a method for computing the relative
contribution of neurons at one point in a network

1We exclude EOS on the grounds that it is not a real token.

to neurons at another. Here we propose to use LRP
to evaluate the degree to which different heads at
each layer contribute to the top-1 logit predicted
by the model. Heads whose outputs have a higher
relevance value may be judged to be more impor-
tant to the model’s predictions.

The results of LRP are shown in Figures 1a, 2a,
2c. In each layer, LRP ranks a small number of
heads as much more important than all others.

The confidence for each head is shown in Fig-
ure 1b. We can observe that the relevance of a
head as computed by LRP agrees to a reasonable
extent with its confidence. The only clear excep-
tion to this pattern is the head judged by LRP to
be the most important in the first layer. It is the
most relevant head in the first layer but its average
maximum attention weight is low. We will discuss
this head further in Section 5.3.

5 Characterizing heads

We now turn to investigating whether heads
play consistent and interpretable roles within the
model.

We examined some attention matrices paying
particular attention to heads ranked highly by LRP
and identified three functions which heads might
be playing:

1. positional: the head points to an adjacent to-
ken,

2. syntactic: the head points to tokens in a spe-
cific syntactic relation,

3. rare words: the head points to the least fre-
quent tokens in a sentence.

Now we discuss the criteria used to determine
if a head is performing one of these functions and
examine properties of the corresponding heads.

• The relevance of a head as computed by LRP agrees to a
reasonable extent with its confidence.

Characterizing heads

• Positional heads

• Syntactic heads

• Rare word heads

(a) LRP (b) confidence (c) head functions

Figure 1: Importance (according to LRP), confidence, and function of self-attention heads. In each layer, heads
are sorted by their relevance according to LRP. Model trained on 6m OpenSubtitles EN-RU data.

(a) LRP (EN-DE) (b) head functions

(c) LRP (EN-FR) (d) head functions

Figure 2: Importance (according to LRP) and function
of self-attention heads. In each layer, heads are sorted
by their relevance according to LRP. Models trained on
2.5m WMT EN-DE (a, b) and EN-FR (c, d).

4 Identifying Important Heads

Previous work analyzing how representations are
formed by the Transformer’s multi-head attention
mechanism have implicitly assumed that all heads
are equally important by taking either the aver-
age or the maximum attention weights over all
heads (Voita et al., 2018; Tang et al., 2018). We
argue that this obscures the roles played by indi-
vidual heads which, as we will show, influence the
generated translations to differing extents.

We define the “confidence” of a head as the av-
erage of its maximum attention weight excluding
the end of sentence symbol.1 A confident head is
one that usually assigns a high proportion of its at-
tention to a single token. Intuitively, we might ex-
pect confident heads to be important to the trans-
lation task.

Layer-wise relevance propagation (LRP) (Ding
et al., 2017) is a method for computing the relative
contribution of neurons at one point in a network

1We exclude EOS on the grounds that it is not a real token.

to neurons at another. Here we propose to use LRP
to evaluate the degree to which different heads at
each layer contribute to the top-1 logit predicted
by the model. Heads whose outputs have a higher
relevance value may be judged to be more impor-
tant to the model’s predictions.

The results of LRP are shown in Figures 1a, 2a,
2c. In each layer, LRP ranks a small number of
heads as much more important than all others.

The confidence for each head is shown in Fig-
ure 1b. We can observe that the relevance of a
head as computed by LRP agrees to a reasonable
extent with its confidence. The only clear excep-
tion to this pattern is the head judged by LRP to
be the most important in the first layer. It is the
most relevant head in the first layer but its average
maximum attention weight is low. We will discuss
this head further in Section 5.3.

5 Characterizing heads

We now turn to investigating whether heads
play consistent and interpretable roles within the
model.

We examined some attention matrices paying
particular attention to heads ranked highly by LRP
and identified three functions which heads might
be playing:

1. positional: the head points to an adjacent to-
ken,

2. syntactic: the head points to tokens in a spe-
cific syntactic relation,

3. rare words: the head points to the least fre-
quent tokens in a sentence.

Now we discuss the criteria used to determine
if a head is performing one of these functions and
examine properties of the corresponding heads.

Pruning Attention Heads

• We have identified certain functions of the most relevant
heads at each layer and showed that to a large extent
they are interpretable

• What of the remaining heads?

L0-norm

Figure 4 compares the scores of the models trained
on WMT with different target languages.

Clearly certain heads learn to detect syntactic
relations with accuracies significantly higher than
the baseline. This supports the hypothesis that the
encoder does indeed perform some amount of syn-
tactic disambiguation of the source sentence.

Several heads appear to be responsible for the
same dependency relation. These heads are shown
in green in Figures 1c, 2b, 2d.

Unfortunately, it is not possible to draw any
strong conclusions from these results regarding the
impact of target language morphology on the ac-
curacy of the syntactic attention heads although re-
lations with strong target morphology are among
those that are most accurately learned.

Note the difference in accuracy of the verb-
subject relation heads across the two domains
for English-Russian. We hypothesize that this
is due to the greater variety of grammatical per-
son present2 in the Subtitles data which requires
more attention to this relation. However, we leave
proper analysis of this to future work.

5.3 Rare words
In all models (EN-RU, EN-DE, EN-FR on WMT
and EN-RU on OpenSubtitles), we find that one
head in the first layer is judged to be much more
important to the model’s predictions than any
other heads in this layer.

We find that this head points to the least fre-
quent tokens in a sentence. For models trained on
OpenSubtitles, among sentences where the least
frequent token in a sentence is not in the top-
500 most frequent tokens, this head points to the
rarest token in 66% of cases, and to one of the two
least frequent tokens in 83% of cases. For mod-
els trained on WMT, this head points to one of
the two least frequent tokens in more than 50% of
such cases. This head is shown in orange in Fig-
ures 1c, 2b, 2d. Examples of attention maps for
this head for models trained on WMT data with
different target languages are shown in Figure 5.

6 Pruning Attention Heads

We have identified certain functions of the most
relevant heads at each layer and showed that to a
large extent they are interpretable. What of the

2First, second and third person subjects are encountered
in approximately 6%, 3% and 91% of cases in WMT data
and in 32%, 21% and 47% of cases in OpenSubtitles data

remaining heads? Are they redundant to trans-
lation quality or do they play equally vital but
simply less easily defined roles? We introduce a
method for pruning attention heads to try to an-
swer these questions. Our method is based on
Louizos et al. (2018). Whereas they pruned in-
dividual neural network weights, we prune entire
model components (i.e. heads). We start by de-
scribing our method and then examine how per-
formance changes as we remove heads, identify-
ing the functions of heads retained in the sparsified
models.

6.1 Method
We modify the original Transformer architecture
by multiplying the representation computed by
each headi by a scalar gate gi. Equation (3) turns
into

MultiHead(Q,K, V)=Concati(gi ·headi)WO.

Unlike usual gates, gi are parameters specific to
heads and are independent of the input (i.e. the
sentence). As we would like to disable less im-
portant heads completely rather than simply down-
weighting them, we would ideally apply L0 regu-
larization to the scalars gi. The L0 norm equals the
number of non-zero components and would push
the model to switch off less important heads:

L0(g1, . . . , gh) =
hX

i=1

(1� [[gi = 0]]),

where h is the number of heads, and [[]] denotes
the indicator function.

Unfortunately, the L0 norm is non-
differentiable and so cannot be directly incor-
porated as a regularization term in the objective
function. Instead, we use a stochastic relaxation:
each gate gi is now a random variable drawn
independently from a head-specific distribution.3

We use the Hard Concrete distributions (Louizos
et al., 2018), a parameterized family of mixed
discrete-continuous distributions over the closed
interval [0, 1], see Figure 6a. The distributions
have non-zero probability mass at 0 and 1,
P (gi = 0|�i) and P (gi = 1|�i), where �i are
the distribution parameters. Intuitively, the Hard
Concrete distribution is obtained by stretching
the binary version of the Concrete (aka Gumbel
softmax) distribution (Maddison et al., 2017; Jang
et al., 2017) from the original support of (0, 1) to

3In training, we resample gate values gi for each batch.

Figure 4 compares the scores of the models trained
on WMT with different target languages.

Clearly certain heads learn to detect syntactic
relations with accuracies significantly higher than
the baseline. This supports the hypothesis that the
encoder does indeed perform some amount of syn-
tactic disambiguation of the source sentence.

Several heads appear to be responsible for the
same dependency relation. These heads are shown
in green in Figures 1c, 2b, 2d.

Unfortunately, it is not possible to draw any
strong conclusions from these results regarding the
impact of target language morphology on the ac-
curacy of the syntactic attention heads although re-
lations with strong target morphology are among
those that are most accurately learned.

Note the difference in accuracy of the verb-
subject relation heads across the two domains
for English-Russian. We hypothesize that this
is due to the greater variety of grammatical per-
son present2 in the Subtitles data which requires
more attention to this relation. However, we leave
proper analysis of this to future work.

5.3 Rare words
In all models (EN-RU, EN-DE, EN-FR on WMT
and EN-RU on OpenSubtitles), we find that one
head in the first layer is judged to be much more
important to the model’s predictions than any
other heads in this layer.

We find that this head points to the least fre-
quent tokens in a sentence. For models trained on
OpenSubtitles, among sentences where the least
frequent token in a sentence is not in the top-
500 most frequent tokens, this head points to the
rarest token in 66% of cases, and to one of the two
least frequent tokens in 83% of cases. For mod-
els trained on WMT, this head points to one of
the two least frequent tokens in more than 50% of
such cases. This head is shown in orange in Fig-
ures 1c, 2b, 2d. Examples of attention maps for
this head for models trained on WMT data with
different target languages are shown in Figure 5.

6 Pruning Attention Heads

We have identified certain functions of the most
relevant heads at each layer and showed that to a
large extent they are interpretable. What of the

2First, second and third person subjects are encountered
in approximately 6%, 3% and 91% of cases in WMT data
and in 32%, 21% and 47% of cases in OpenSubtitles data

remaining heads? Are they redundant to trans-
lation quality or do they play equally vital but
simply less easily defined roles? We introduce a
method for pruning attention heads to try to an-
swer these questions. Our method is based on
Louizos et al. (2018). Whereas they pruned in-
dividual neural network weights, we prune entire
model components (i.e. heads). We start by de-
scribing our method and then examine how per-
formance changes as we remove heads, identify-
ing the functions of heads retained in the sparsified
models.

6.1 Method
We modify the original Transformer architecture
by multiplying the representation computed by
each headi by a scalar gate gi. Equation (3) turns
into

MultiHead(Q,K, V)=Concati(gi ·headi)WO.

Unlike usual gates, gi are parameters specific to
heads and are independent of the input (i.e. the
sentence). As we would like to disable less im-
portant heads completely rather than simply down-
weighting them, we would ideally apply L0 regu-
larization to the scalars gi. The L0 norm equals the
number of non-zero components and would push
the model to switch off less important heads:

L0(g1, . . . , gh) =
hX

i=1

(1� [[gi = 0]]),

where h is the number of heads, and [[]] denotes
the indicator function.

Unfortunately, the L0 norm is non-
differentiable and so cannot be directly incor-
porated as a regularization term in the objective
function. Instead, we use a stochastic relaxation:
each gate gi is now a random variable drawn
independently from a head-specific distribution.3

We use the Hard Concrete distributions (Louizos
et al., 2018), a parameterized family of mixed
discrete-continuous distributions over the closed
interval [0, 1], see Figure 6a. The distributions
have non-zero probability mass at 0 and 1,
P (gi = 0|�i) and P (gi = 1|�i), where �i are
the distribution parameters. Intuitively, the Hard
Concrete distribution is obtained by stretching
the binary version of the Concrete (aka Gumbel
softmax) distribution (Maddison et al., 2017; Jang
et al., 2017) from the original support of (0, 1) to

3In training, we resample gate values gi for each batch.

Result

Figure 7: BLEU score as a function of number of re-
tained encoder heads (EN-RU). Regularization applied
by fine-tuning trained model.

Figure 8: Functions of encoder heads retained after
pruning. Each column represents all remaining heads
after varying amount of pruning (EN-RU; Subtitles).

6.2.2 Functions of retained heads
Results in Figure 7 suggest that the encoder re-
mains effective even with only a few heads. In this
section, we investigate the function of those heads
that remain in the encoder during pruning. Fig-
ure 8 shows all heads color-coded for their func-
tion in a pruned model. Each column corresponds
to a model with a particular number of heads re-
tained after pruning. Heads from all layers are or-
dered by their function. Some heads can perform
several functions (e.g., s ! v and v ! o); in this
case the number of functions is shown.

First, we note that the model with 17 heads re-
tains heads with all the functions that we identified
in Section 5, even though 2/3 of the heads have
been pruned.

This indicates that these functions are indeed
the most important. Furthermore, when we have
fewer heads in the model, some functions “drift”
to other heads: for example, we see positional
heads starting to track syntactic dependencies;
hence some heads are assigned more than one
color at certain stages in Figure 8.

6.3 Pruning all types of attention heads

We found our pruning technique to be efficient at
reducing the number of heads in the encoder with-

out a major drop in translation quality. Now we
investigate the effect of pruning all types of atten-
tion heads in the model (not just in the encoder).
This allows us to evaluate the importance of differ-
ent types of attention in the model for the task of
translation. In these experiments, we add gates to
all multi-head attention heads in the Transformer,
i.e. encoder and decoder self-attention and atten-
tion from the decoder to the encoder.

6.3.1 Quantitative results: BLEU score
Results of experiments pruning heads in all atten-
tion layers are provided in Table 2. For models
trained on WMT data, we are able to prune almost
3/4 of encoder heads and more than 1/3 of heads
in decoder self-attention and decoder-encoder at-
tention without any noticeable loss in translation
quality (sparse heads, row 1). We can also prune
more than half of all heads in the model and lose
no more than 0.25 BLEU.

While these results show clearly that the ma-
jority of attention heads can be removed from
the fully trained model without significant loss in
translation quality, it is not clear whether a model
can be trained from scratch with such a small
number of heads. In the rightmost column in Ta-
ble 2 we provide BLEU scores for models trained
with exactly the same number and configuration of
heads in each layer as the corresponding pruned
models but starting from a random initialization
of parameters. Here the degradation in translation
quality is more significant than for pruned models
with the same number of heads.

6.3.2 Heads importance
Figure 9 shows the number of retained heads for
each attention type at different pruning rates. We
can see that the model prefers to prune encoder
self-attention heads first, while decoder-encoder
attention heads appear to be the most important
for both datasets. Obviously, without decoder-
encoder attention no translation can happen.

The importance of decoder self-attention heads,
which function primarily as a target side language
model, varies across domains. These heads ap-
pear to be almost as important as decoder-encoder
attention heads for WMT data with its long sen-
tences (24 tokens on average), and slightly more
important than encoder self-attention heads for
OpenSubtitles dataset where sentences are shorter
(8 tokens on average).

Figure 10 shows the number of active self-

Results
Figure 7: BLEU score as a function of number of re-
tained encoder heads (EN-RU). Regularization applied
by fine-tuning trained model.

Figure 8: Functions of encoder heads retained after
pruning. Each column represents all remaining heads
after varying amount of pruning (EN-RU; Subtitles).

6.2.2 Functions of retained heads
Results in Figure 7 suggest that the encoder re-
mains effective even with only a few heads. In this
section, we investigate the function of those heads
that remain in the encoder during pruning. Fig-
ure 8 shows all heads color-coded for their func-
tion in a pruned model. Each column corresponds
to a model with a particular number of heads re-
tained after pruning. Heads from all layers are or-
dered by their function. Some heads can perform
several functions (e.g., s ! v and v ! o); in this
case the number of functions is shown.

First, we note that the model with 17 heads re-
tains heads with all the functions that we identified
in Section 5, even though 2/3 of the heads have
been pruned.

This indicates that these functions are indeed
the most important. Furthermore, when we have
fewer heads in the model, some functions “drift”
to other heads: for example, we see positional
heads starting to track syntactic dependencies;
hence some heads are assigned more than one
color at certain stages in Figure 8.

6.3 Pruning all types of attention heads

We found our pruning technique to be efficient at
reducing the number of heads in the encoder with-

out a major drop in translation quality. Now we
investigate the effect of pruning all types of atten-
tion heads in the model (not just in the encoder).
This allows us to evaluate the importance of differ-
ent types of attention in the model for the task of
translation. In these experiments, we add gates to
all multi-head attention heads in the Transformer,
i.e. encoder and decoder self-attention and atten-
tion from the decoder to the encoder.

6.3.1 Quantitative results: BLEU score
Results of experiments pruning heads in all atten-
tion layers are provided in Table 2. For models
trained on WMT data, we are able to prune almost
3/4 of encoder heads and more than 1/3 of heads
in decoder self-attention and decoder-encoder at-
tention without any noticeable loss in translation
quality (sparse heads, row 1). We can also prune
more than half of all heads in the model and lose
no more than 0.25 BLEU.

While these results show clearly that the ma-
jority of attention heads can be removed from
the fully trained model without significant loss in
translation quality, it is not clear whether a model
can be trained from scratch with such a small
number of heads. In the rightmost column in Ta-
ble 2 we provide BLEU scores for models trained
with exactly the same number and configuration of
heads in each layer as the corresponding pruned
models but starting from a random initialization
of parameters. Here the degradation in translation
quality is more significant than for pruned models
with the same number of heads.

6.3.2 Heads importance
Figure 9 shows the number of retained heads for
each attention type at different pruning rates. We
can see that the model prefers to prune encoder
self-attention heads first, while decoder-encoder
attention heads appear to be the most important
for both datasets. Obviously, without decoder-
encoder attention no translation can happen.

The importance of decoder self-attention heads,
which function primarily as a target side language
model, varies across domains. These heads ap-
pear to be almost as important as decoder-encoder
attention heads for WMT data with its long sen-
tences (24 tokens on average), and slightly more
important than encoder self-attention heads for
OpenSubtitles dataset where sentences are shorter
(8 tokens on average).

Figure 10 shows the number of active self-

Interpretable Neural Predictions with Differentiable Binary Variables

Joost Bastings

ILLC
University of Amsterdam
bastings@uva.nl

Wilker Aziz

ILLC
University of Amsterdam
w.aziz@uva.nl

Ivan Titov

ILLC, University of Amsterdam
ILCC, University of Edinburgh
ititov@inf.ed.ac.uk

Abstract

The success of neural networks comes hand
in hand with a desire for more interpretabil-
ity. We focus on text classifiers and make them
more interpretable by having them provide
a justification—a rationale—for their predic-
tions. We approach this problem by jointly
training two neural network models: a latent
model that selects a rationale (i.e. a short
and informative part of the input text), and
a classifier that learns from the words in the
rationale alone. Previous work proposed to
assign binary latent masks to input positions
and to promote short selections via sparsity-
inducing penalties such as L0 regularisation.
We propose a latent model that mixes discrete
and continuous behaviour allowing at the same
time for binary selections and gradient-based
training without REINFORCE. In our formu-
lation, we can tractably compute the expected
value of penalties such as L0, which allows us
to directly optimise the model towards a pre-
specified text selection rate. We show that our
approach is competitive with previous work on
rationale extraction, and explore further uses
in attention mechanisms.

1 Introduction

Neural networks are bringing incredible perfor-
mance gains on text classification tasks (Howard
and Ruder, 2018; Peters et al., 2018; Devlin
et al., 2019). However, this power comes hand in
hand with a desire for more interpretability, even
though its definition may differ (Lipton, 2016).
While it is useful to obtain high classification
accuracy, with more data available than ever
before it also becomes increasingly important to
justify predictions. Imagine having to classify a
large collection of documents, while verifying
that the classifications make sense. It would be
extremely time-consuming to read each document
to evaluate the results. Moreover, if we do not

pours a dark amber color with decent head that does
not recede much . it ’s a tad too dark to see the

carbonation , but fairs well . smells of roasted malts
and mouthfeel is quite strong in the sense that you
can get a good taste of it before you even swallow .

Rationale Extractor

pours a dark amber color with decent head that does
not recede much . it ’s a tad too dark to see the

carbonation , but fairs well . smells of roasted malts
and mouthfeel is quite strong in the sense that you
can get a good taste of it before you even swallow .

Classifier

look: FFFF

Figure 1: Rationale extraction for a beer review.

know why a prediction was made, we do not know
if we can trust it.

What if the model could provide us the most
important parts of the document, as a justification
for its prediction? That is exactly the focus of this
paper. We use a setting that was pioneered by Lei
et al. (2016). A rationale is defined to be a short

yet sufficient part of the input text; short so that it
makes clear what is most important, and sufficient
so that a correct prediction can be made from the
rationale alone. One neural network learns to ex-
tract the rationale, while another neural network,
with separate parameters, learns to make a predic-
tion from just the rationale. Lei et al. model this
by assigning a binary Bernoulli variable to each
input word. The rationale then consists of all the
words for which a 1 was sampled. Because gradi-
ents do not flow through discrete samples, the ra-
tionale extractor is optimized using REINFORCE
(Williams, 1992). An L0 regularizer is used to
make sure the rationale is short.

We propose an alternative to purely discrete se-
lectors for which gradient estimation is possible
without REINFORCE, instead relying on a repa-

ar
X

iv
:1

90
5.

08
16

0v
1

 [c
s.C

L]
 2

0
M

ay
 2

01
9

Rational

• Can we trust neural models?

• What if the model could provide us the most important
parts of the document, as a justification for its prediction?

Rational

Interpretable Neural Predictions with Differentiable Binary Variables

Joost Bastings

ILLC
University of Amsterdam
bastings@uva.nl

Wilker Aziz

ILLC
University of Amsterdam
w.aziz@uva.nl

Ivan Titov

ILLC, University of Amsterdam
ILCC, University of Edinburgh
ititov@inf.ed.ac.uk

Abstract

The success of neural networks comes hand
in hand with a desire for more interpretabil-
ity. We focus on text classifiers and make them
more interpretable by having them provide
a justification—a rationale—for their predic-
tions. We approach this problem by jointly
training two neural network models: a latent
model that selects a rationale (i.e. a short
and informative part of the input text), and
a classifier that learns from the words in the
rationale alone. Previous work proposed to
assign binary latent masks to input positions
and to promote short selections via sparsity-
inducing penalties such as L0 regularisation.
We propose a latent model that mixes discrete
and continuous behaviour allowing at the same
time for binary selections and gradient-based
training without REINFORCE. In our formu-
lation, we can tractably compute the expected
value of penalties such as L0, which allows us
to directly optimise the model towards a pre-
specified text selection rate. We show that our
approach is competitive with previous work on
rationale extraction, and explore further uses
in attention mechanisms.

1 Introduction

Neural networks are bringing incredible perfor-
mance gains on text classification tasks (Howard
and Ruder, 2018; Peters et al., 2018; Devlin
et al., 2019). However, this power comes hand in
hand with a desire for more interpretability, even
though its definition may differ (Lipton, 2016).
While it is useful to obtain high classification
accuracy, with more data available than ever
before it also becomes increasingly important to
justify predictions. Imagine having to classify a
large collection of documents, while verifying
that the classifications make sense. It would be
extremely time-consuming to read each document
to evaluate the results. Moreover, if we do not

pours a dark amber color with decent head that does
not recede much . it ’s a tad too dark to see the

carbonation , but fairs well . smells of roasted malts
and mouthfeel is quite strong in the sense that you
can get a good taste of it before you even swallow .

Rationale Extractor

pours a dark amber color with decent head that does
not recede much . it ’s a tad too dark to see the

carbonation , but fairs well . smells of roasted malts
and mouthfeel is quite strong in the sense that you
can get a good taste of it before you even swallow .

Classifier

look: FFFF

Figure 1: Rationale extraction for a beer review.

know why a prediction was made, we do not know
if we can trust it.

What if the model could provide us the most
important parts of the document, as a justification
for its prediction? That is exactly the focus of this
paper. We use a setting that was pioneered by Lei
et al. (2016). A rationale is defined to be a short

yet sufficient part of the input text; short so that it
makes clear what is most important, and sufficient
so that a correct prediction can be made from the
rationale alone. One neural network learns to ex-
tract the rationale, while another neural network,
with separate parameters, learns to make a predic-
tion from just the rationale. Lei et al. model this
by assigning a binary Bernoulli variable to each
input word. The rationale then consists of all the
words for which a 1 was sampled. Because gradi-
ents do not flow through discrete samples, the ra-
tionale extractor is optimized using REINFORCE
(Williams, 1992). An L0 regularizer is used to
make sure the rationale is short.

We propose an alternative to purely discrete se-
lectors for which gradient estimation is possible
without REINFORCE, instead relying on a repa-

ar
X

iv
:1

90
5.

08
16

0v
1

 [c
s.C

L]
 2

0
M

ay
 2

01
9

L0-norm

rameterization of a random variable that exhibits
both continuous and discrete behavior (Louizos
et al., 2017). To promote compact rationales,
we employ a relaxed form of L0 regularization
(Louizos et al., 2017), penalizing the objective as
a function of the expected proportion of selected
text. We also propose the use of Lagrangian re-
laxation to target a specific rate of selected input
text.

Our contributions are summarized as follows:1

1. we present a differentiable approach to ex-
tractive rationales (§2) including an objective
that allows for specifying how much text is to
be extracted (§4);

2. we introduce HardKuma (§3), which gives
support to binary outcomes and allows for
reparameterized gradient estimates;

3. we empirically show that our approach is
competitive with previous work and that
HardKuma has further applications, e.g. in
attention mechanisms. (§6).

2 Latent Rationale

We are interested in making NN-based text clas-
sifiers interpretable by (i) uncovering which parts
of the input text contribute features for classifica-
tion, and (ii) basing decisions on only a fraction
of the input text (a rationale). Lei et al. (2016)
approached (i) by inducing binary latent selectors
that control which input positions are available to
an NN encoder that learns features for classifica-
tion/regression, and (ii) by regularising their archi-
tectures using sparsity-inducing penalties on latent
assignments. In this section we put their approach
under a probabilistic light, and this will then more
naturally lead to our proposed method.

In text classification, an input x is mapped to a
distribution over target labels:

Y |x ⇠ Cat(f(x; ✓)) , (1)

where we have a neural network architecture
f(·; ✓) parameterize the model—✓ collectively de-
notes the parameters of the NN layers in f . That
is, an NN maps from data space (e.g. sentences,
short paragraphs, or premise-hypothesis pairs) to
the categorical parameter space (i.e. a vector of
class probabilities). For the sake of concreteness,

1Code available at https://github.com/
bastings/interpretable_predictions.

consider the input a sequence x = hx1, . . . , xni.
A target y is typically a categorical outcome, such
as a sentiment class or an entailment decision, but
with an appropriate choice of likelihood it could
also be a numerical score (continuous or integer).

Lei et al. (2016) augment this model with a
collection of latent variables which we denote by
z = hz1, . . . , zni. These variables are responsible
for regulating which portions of the input x con-
tribute with predictors (i.e. features) to the clas-
sifier. The model formulation changes as follows:

Zi|x ⇠ Bern(gi(x;�))

Y |x, z ⇠ Cat(f(x� z; ✓))
(2)

where an NN g(·;�) predicts a sequence of n
Bernoulli parameters—one per latent variable—
and the classifier is modified such that zi indicates
whether or not xi is available for encoding. We
can think of the sequence z as a binary gating
mechanism used to select a rationale, which with
some abuse of notation we denote by x�z. Figure
1 illustrates the approach.

Parameter estimation for this model can be done
by maximizing a lower bound E(�, ✓) on the log-
likelihood of the data derived by application of
Jensen’s inequality:2

logP (y|x) = logEP (z|x,�) [P (y|x, z, ✓)]
JI
� EP (z|x,�) [logP (y|x, z, ✓)] = E(�, ✓) .

(3)

These latent rationales approach the first objec-
tive, namely, uncovering which parts of the input
text contribute towards a decision. However note
that an NN controls the Bernoulli parameters, thus
nothing prevents this NN from selecting the whole
of the input, thus defaulting to a standard text clas-
sifier. To promote compact rationales, Lei et al.
(2016) impose sparsity-inducing penalties on la-
tent selectors. They penalise for the total number
of selected words, L0 in (4), as well as, for the to-
tal number of transitions, fused lasso in (4), and
approach the following optimization problem

min
�,✓

�E(�, ✓)+�0

nX

i=1

zi

| {z }
L0(z)

+�1

n�1X

i=1

|zi � zi+1|
| {z }

fused lasso

(4)

via gradient-based optimisation, where �0 and �1

are fixed hyperparameters. The objective is how-
ever intractable to compute, the lowerbound, in

2This can be seen as variational inference (Jordan et al.,
1999) where we perform approximate inference using a data-
dependent prior P (z|x,�).

The Trick
• We start from a distribution over the open interval (0, 1)

• Closed form solution for P(not zero)

• Most probability lies on the two ends

• We then stretch its support from l < 0 to r > 1 in order to
include {0} and {1}

• We collapse the probability mass over the interval (l, 0] to
{0}, and similarly, the probability mass over the interval [1,
r) to {1}

Concrete(a) (b) (c)

Figure 5: Attention maps of the rare words head. Models trained on WMT: (a) EN-RU, (b) EN-DE, (c) EN-FR

(a) (b)

Figure 6: Concrete distribution: (a) Concrete and its
stretched and rectified version (Hard Concrete); (b)
Hard Concrete distributions with different parameters.

(�✏, 1 + ✏) and then collapsing the probability
mass assigned to (�✏, 1] and [1, 1 + ✏) to single
points, 0 and 1, respectively. These stretching and
rectification operations yield a mixed discrete-
continuous distribution over [0, 1]. Now the sum
of the probabilities of heads being non-zero can
be used as a relaxation of the L0 norm:

LC(�) =
hX

i=1

(1� P (gi = 0|�i)).

The new training objective is

L(✓,�) = Lxent(✓,�) + �LC(�),

where ✓ are the parameters of the original Trans-
former, Lxent(✓,�) is cross-entropy loss for the
translation model, and LC(�) is the regularizer
described above. The objective is easy to opti-
mize: the reparameterization trick (Kingma and
Welling, 2014; Rezende et al., 2014) can be used
to backpropagate through the sampling process for
each gi, whereas the regularizer and its gradients
are available in the closed form. Interestingly,
we observe that the model converges to solutions
where gates are either almost completely closed
(i.e. the head is pruned, P (gi = 0|�i) ⇡ 1) or
completely open (P (gi = 1|�i) ⇡ 1), the latter
not being explicitly encouraged.4 This means that

4The ‘noise’ pushes the network not to use middle values.

at test time we can treat the model as a standard
Transformer and use only a subset of heads.

When applying this regularizer, we start from
the converged model trained without the LC

penalty (i.e. parameters ✓ are initialized with the
parameters of the converged model) and then add
the gates and continue training the full objective.
By varying the coefficient � in the optimized ob-
jective, we obtain models with different numbers
of heads retained.5

6.2 Pruning encoder heads

To determine which head functions are most im-
portant in the encoder and how many heads the
model needs, we conduct a series of experiments
with gates applied only to encoder self-attention.
Here we prune a model by fine-tuning a trained
model with the regularized objective.6 During
pruning, the parameters of the decoder are fixed
and only the encoder parameters and head gates
are fine-tuned. By not fine-tuning the decoder, we
ensure that the functions of the pruned encoder
heads do not migrate to the decoder.

6.2.1 Quantitative results: BLEU score

BLEU scores are provided in Figure 7. Surpris-
ingly, for OpenSubtitles, we lose only 0.25 BLEU
when we prune all but 4 heads out of 48. For the
more complex WMT task, 10 heads in the encoder
are sufficient to stay within 0.15 BLEU of the full
model.

The combination of noise and rectification has been previ-
ously used to achieve discretization (e.g., Kaiser and Bengio
(2018)).

5The code of the model will be made freely available at
the time of publication.

6In preliminary experiments, we observed that fine-tuning
a trained model gives slightly better results (0.2–0.6 BLEU)
than applying the regularized objective, or training a model
with the same number of self-attention heads, from scratch.

Kumaraswamy

A Kumaraswamy distribution

Figure 7: Kuma plots for various (a, b) parameters.

A Kumaraswamy-distributed variable K ⇠
Kuma(a, b) takes on values in the open interval
(0, 1) and has density

fK(k; a, b) = abka�1
(1� ka)b�1 , (17)

where a 2 R>0 and b 2 R>0 are shape param-
eters. Its cumulative distribution takes a simple
closed-form expression

FK(k; a, b) =

Z
k

0
fK(⇠|a, b)d⇠ (18a)

= 1� (1� ka)b , (18b)

with inverse

F�1
K

(u; a, b) =
⇣
1� (1� u)

1/b
⌘1/a

. (19)

A.1 Generalised-support Kumaraswamy

We can generalise the support of a Kumaraswamy
variable by specifying two constants l < r and
transforming a random variable K ⇠ Kuma(a, b)
to obtain T ⇠ Kuma(a, b, l, r) as shown in (20,
left).

t = l + (r � l)k k = (t� l)/(r � l) (20)

The density of the resulting variable is

fT (t; a, b, l, r) (21a)

= fK
⇣

t�l

r�l
; a, b

⌘ ����
dk

dt

���� (21b)

= fK
⇣

t�l

r�l
; a, b

⌘
1

(r � l)
(21c)

where r � l > 0 by definition. This affine trans-
formation leaves the cdf unchanged, i.e.

FT (t0; a, b, l, r) =

Z
t0

�1
fT (t; a, b, l, r)dt

=

Z
t0

�1
fK

⇣
t�l

r�l
; a, b

⌘
1

(r � l)
dt

=

Z t0�l
r�l

�1
fK(k; a, b)

1

(r � l)
(r � l)dk

= FK

⇣
t0�l

r�l
; a, b

⌘
.

(22)

Thus we can obtain samples from this generalised-
support Kumaraswamy by sampling from a uni-
form distribution U(0, 1), applying the inverse
transform (19), then shifting and scaling the sam-
ple according to (20, left).

A.2 Rectified Kumaraswamy

First, we stretch a Kumaraswamy distribution to
include 0 and 1 in its support, that is, with l < 0

and r > 1, we define T ⇠ Kuma(a, b, l, r). Then
we apply a hard-sigmoid transformation to this
variable, that is, h = min(0,max(1, t)), which
results in a rectified distribution which gives sup-
port to the closed interval [0, 1]. We denote this
rectified variable by

H ⇠ HardKuma(a, b, l, r) (23)

whose distribution function is

fH(h; a, b, l, r) =

P(h = 0)�(h) + P(h = 1)�(h� 1)

+ P(0 < h < 1)
fT (h; a, b, l, r)1(0,1)(h)

P(0 < h < 1)

(24)

where

P(h = 0) = P(t  0)

= FT (0; a, b, l, r) = FK(� l/(r � l); a, b)
(25)

is the probability of sampling exactly 0, where

P(h = 1) = P(t � 1) = 1� P(t < 1)

= 1� FT (1; a, b, l, r)

= 1� FK((1� l)/(r � l); a, b)

(26)

is the probability of sampling exactly 1, and

P(0 < h < 1) = 1�P(h = 0)�P(h = 1) (27)

is the probability of drawing a continuous value
in (0, 1). Note that we used the result in (22) to
express these probabilities in terms of the tractable
cdf of the original Kumaraswamy variable.

