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Problem Statement

* We have a pre-trained general LM p(x) and we want to

generate text with a desirable attribute a p(x|a) (or multiple
attributes)

e formality, topic, style, sentiment, detoxification, etc

* The most basic baseline: fine-tuning a class-conditional
language model

* Fine-tuning large LMs can be expensive

e Difficult to preserve the desirable quality of p(x)
e Need a separate LM for each attribute
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Motivation

Fine-tuning large LMs can be expensive
Difficult to preserve the desirable quality of p(x)

Train smaller-sized LMs as discriminators
Apply Bayes rule
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Methods
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Motivation

Fine-tuning large LMs can be expensive
Difficult to preserve the desirable quality of p(x)

Train smaller-sized LMs on text with desirable and
undesirable attributes (experts and anti-experts)

Combine base LM with experts and anti-experts



Methods
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Summary

* Fine-tuning large LMs can be expensive
e Difficult to preserve the desirable quality of p(x)

* smaller-sized class-conditional LMs
* Used in a weighted combination of generators
* Used as generative discriminators



Summary

* Need a separate LM for each attribute
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Motivation

* Many fixed class-conditional language model => a single
variable class-conditional language model

e Add a class variable that describes the attribute of the
text to generate



Methods

e CTRL is a conditional language model that is always
conditioned on a control code ¢

e CTRL is trained with natural control codes
e Domain, subdomain, entities, entity relations, and even

d ates Science Title: Scientists have discovered a new type of bacteria that
can survive in the presence of high levels of carbon dioxide\nText:[Link
to article] (http://news.nationalgeographic.com/news/2011/07/

() Task 11071 7-methane-bacteria—carbon-dioxide—environment—science/)\n\nThe

researchers found that this particular strain of methane bacterium is able to thrive at concentrations
up to 10 times higher than normal atmospheric levels.\n\nThey also note that these findings are
consistent with previous research showing that some types of microbes may be capable of surviving
under extreme conditions such as those associated with global warming.

Politics Title: The US is the only country in history to have a national debt of more than
$20 trillion.\nText: I know this isn’t exactly an accurate representation but it gives you some idea
how much money we are talking about.\n\nhttp://en.wikipedia.org/wiki/National_|
debt#United_States

Questions Q: What is the capital of India? A : New Delhi\n\nQ: Which city in India has a large
population of people from Gujarat?\n\nA: Ahmedabad\n\nQ: How many languages are spoken by
Indians living abroad?\n\nA: more than 100. ..

Translation English : We release a new model for coherent language generation ; French :
Nous publions un nouveau modéle de génération cohérente du langage\n\nEnglish : The European
Parliament has just adopted the report on the proposal for a regulation of the European Parliament and of
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Motivation

CTRL is expensive (1.63B parameters) and lacks flexibility
since the control codes are fixed.

Lightweight and flexible fine-tuning:
* introduce a fewer additional parameters

 Easy to add a new attribute control



Methods

* Prefix-tuning: optimize a a set of small continuous attribute-
specific vectors for steer text generation.

 The original parameters of GPT2 is fixed
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Methods

e Supervised Training (text with annotated attributes)
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Motivation

* The prompt’s influence is negatively correlated with the
distance from the prompt to the next predicted token.

* Different to the previous work (Qian et al, 2022), it uses
textual prompts.



Methods

e A separate model for prompt instructions (PromptModel)

KVp = PromptModel(Sp)
KV} = CLM(w, | KV;<")
P(wpy1) = CLM(wy, | KV,, KV}<")

 Non-Residual Attention (NRA)
e allow independent prompts at different steps

. - “Stina drives a truck. The road is all
“Stina drives a truck” : empty. [Her dog sleeps next to her.”
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“Include: Truck, Stina” ’ ‘Include: Truck, Stina”| I “Include: Dog”|

“Include: Road, Empty”|



summary

e Previous work assume the access to attribute-specific data / LMs
e Can be impractical in scenarios with privacy concerns
e Let's assume access only to the general LM (no class-conditional LM)

e and pre-trained attribute discriminators



Learning to Write with Cooperative Discriminators

Ari Holtzman' Jan Buys'! Maxwell Forbes'
Antoine Bosselut' David Golub' Yejin Choi'*
"Paul G. Allen School of Computer Science & Engineering, University of Washington
*Allen Institute for Artificial Intelligence
{ahai, jbuys, mbforbes, antoineb, golubd, yejin}@cs.washington.edu

ACL2018



Motivation

 Long-form Text Generation: repetitive, self-contradictory,
and overly generic

e Grice’s Maxims: cooperative discriminators

f>\ (Xa y) — lOg(Rm(y‘X)) + Z /\k'sk'(xa y)
k



Methods

fa(x,y) = log(Pu(ylx))+ Y  Arsk(x,y).
k

1. Repetition Model: word similarity within a fixed window

2. Entailment Model: NLI scores of y against preceding sentences
3. Relevance Model: sentence-pair classification

4. Lexical Style Model: Bag of words Classification Model

1,2,4 are trained using natural sentences as positives and model-
generated sentences as negatives, 3 is an off-the-shelf NLI model.



Methods

fr(%,¥) = log(Pu(y|x)) + > _ Aksk(x,y),
k

1. Repetition
2. Entailmen
3. Relevance

4. Lexical St
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limitation of RNNs. More specifically, we use
an estimated score s;.(x,y1.;) that can be com-
puted for any prefix of y = yi.,, to approxi-
mate the objective during beam search, such that
$1.(X,¥1:n) = Sk(X,y). To ensure that the train-
ing method matches this approximation as closely
as possible, scorers are trained to discriminate pre-
fixes of the same length (chosen from a predeter-
mined set of prefix lengths), rather than complete

1,3,4 are tral| continuations, except for the entailment module as
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Ig sentences
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generated sentences as negatives, 2 is an off-the-shelf NLI model.
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Motivation

P(X|a) x P(X)P(a|X)"

—

e Weighted Decoding: 4 control the trade-off between
control strength and text fluency

* The strength should vary across different positions.

GPT-2: / / / /
/ / / / / CAT-PAW: / / / /

PPLM: war / / / /to/ / / / / /
/ / nuclear / weapons /

PPLM: The potato was a great food staple, and it

was also one of the world's first war weapons.
The potato was the first weapon to make war

possible, and it was war war for war...

CAT-PAW: The potato was a great food staple, and it was
also one of the world's first major crops. It was also the
main food source of the British navy during the Napoleonic
and World War |l periods. The British navy began...



Method

 Regulator: adjust control strength properly at different

positions

P(X|a) H[ (zilz<i) Pa|z<;) Af(a,P(ivgq;))}

* 1. Heuristic Regulator: Amply the signal when it is
more likely to generate attribute-relevant words.

W% is a set of keywords for the attribute a

e 2. Trainable Regulator: train a classifier to
estimates the probability of the next token being
relevant to attribute a. Supervision is from
masking methods for unsupervised style transfer.
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Motivation

P(zi|x1:4-1,a) < P(a|r14)P(x;|T1.6-1)

» Weighted Decoding: although the classifier takes a prefix

X1.; as input, it should predict whether attribute a will in
the future be satisfied for the completed generation.
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Motivation

e Discriminators need to be trained on partial generations
In order to be operationalized with step-wise
autoregressive models

* Many attributes are essentially global.



Methods

* Product of experts as a probabilistic energy model (i.e.,
non-autoregressive, globally normalized LM)

e Gibbs-Metropilis-Hastings sampling

Logits from different models taking the whole sequence as input

Iteration i:
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/ correction based on

Energy LM
E, (X . .

‘ 4(X) Gibbs sampler with

Metropolis-Hastings accept / reject

Ey(X) correction Iteration i+1: The cake is




Summary

 Weighted decoding is slow.

* Feeding candidate next tokens into a discriminator scales
linearly with the number of tokens to be re-weighted
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