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I ¢ . and  fled the market in * Research Question
o cC VvBD DT NN IN o Model makes local prediction on each span representation.

How to model the output dependency in the encoder?
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« Auxiliary training objective 1: Pattern Prediction

o Pattern prediction  Pi,j = Softmax (W5RELU(W?v; ; + bY) + b5)

n n
o PatternLoss £, =-)" p;;logpi,
i=1 j=1



Auxiliary training objective 2: legality between pattern and constituent
o Constituent span (i, ,j, , lf) is a subtree of pattern span (i, , . , I,)

-> [¢ is legal to co-occurrence with I7,.

Both NNS and NP are legal to occur as sub-trees of the 3-gram pattern {VBD NP PP}
S or ADJP cannot be contained with in {VBD NP PP} based on the grammar rule.
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« Auxiliary training objective 2: legality between pattern and constituent
o Constituent span (i, ,j, , lf) is a subtree of pattern span (i, , . , I,)
-> [£ is legal to co-occurrence with I

o Instance-level Consistency Y = Sigmoid ((W$'U;V)(VTU,WY))

o Corpus-level Consistency Y = Sigmoid(WSUWS)
9] 127

o Consistency Loss  £reg=—2_) Yaplogiap

a=1 b=1
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The three training objectives in NFC



Model LR LP F1

Liu and Zhang (2017) ¢ - - 95.71
Kitaev and Klein (2018) 9546 95.73 95.59
Zhou and Zhao (2019) 95.51 9593 95.72
Zhou and Zhao (2019) *  95.70 95.98 95.84
Zhang et al. (2020b) 95.53 95.85 95.69
Nguyen et al. (2020) - - 95.48
Tian et al. (2020) 95.58 96.11 95.85

This work

Kitaev and Klein (2018) T 95.56 95.89 95.72
NFC w/0o L;¢4 9549 96.07 95.78
NFC 95.70 96.14 95.92

Model performance on PTB

Model LR LP F1

Liu and Zhang (2017) ¢ - - 91.81
Kitaev and Klein (2018) 91.55 9196 91.75
Zhang et al. (2020b) 92.04 92.51 92.27
Zhou and Zhao (2019) 91.14 93.09 92.10
Tian et al. (2020) 92.14 92.25 92.20

This work
Kitaev and Klein (2018) 1 91.80 92.23 91.98
NFC w/o L4 91.87 9240 92.13
NFC 92.17 9245 9231
w/ External Dependency Supervision

Zhou and Zhao (2019) * 92.03 92.33 92.18
Mrini et al. (2020)* 91.85 9345 9264

Model performance on CTB



In Domain Syntactic Parsing
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F1 scores versus minimum constituent
span length on PTB test set



In-domain

Cross-domain

ode. PTB Bio Dialogue Forum Law Literature Review | Avg
Liu and Zhang (2017) 95.65 86.33 85.56 85.42 91.50 84.84 83.53 86.20
Kitaev and Klein (2018) 95.72 86.61 86.30 86.29 92.08 86.10 83.88 86.88
NFC 95.92 86.43 89.85 88.52 9543 90.75 88.10 | 89.85
Zero-shot performance on cross-domain test set
Model Rich resource Low Resource Avg
French German Korean Avg Hungarian Basque Polish  Avg
Kitaev and Klein (2018) 87.42 90.20 88.80 88.81 94 .90 91.63 96.36 94.30 | 91.55
Nguyen et al. (2020) 86.69 00.28 88.71 88.56 94.24 92.02 96.14 94.13 | 91.34
Kitaev and Klein (2018) 87.38 90.25 88.91 88.85 94.56 91.66 96.14 94.12 | 91.48
NFC 87.51 90.43 89.07 89.00 94.95 91.73 96.33 94.34 | 91.67

Multi-lingual performance
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e Pearson correlation of n-gram pattern distribution between PTB training set and different test set.



3-gram Pattern F1
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(a) F1 scores measured by 3-gram pattern.

(b) FI1 scores measured by 2-gram pattern.

» NFC significantly outperform baseline measured by pattern-level f1.



Learned Incremental Representations for Parsing
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The little boy likes red tomatoes
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Shift-reduce parser
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The Council approved NP PP

the proposal on Monday January 3

|
NP VP
| | | | |
The Council approved NP PP

| | |

the proposal on taxes for luxury goods

whether the preposition “on” attaches to noun “proposal” or the verb “approved.”
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Encoder Type
Bi (+») Uni (—)
Representation BERT GPT-2 GPT-2

Span Classification
(Kitaev et al., 2019)

Attach-Juxtapose
(Yang and Deng, 2020)

Learned
(This work)

95.59 95.107 93.95T
9579 94.537 87.66T

9909 — 94.97

Model Performance on PTB.
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* In main clauses, subjects and verbs are
assigned symbols 16 and 6.

* Subordinate clauses, however, tend to use
alternate symbols 15 and 13 for subject
nouns and verb, respectively.

* Relative clauses use 20 and 26.

Tags capture structural context beyond the current word!






