Investigating Non-local Features for Neural Constituency Parsing

Leyang Cui[©], Sen Yang^{*}, Yue Zhang^{*}[†] [©]Zhejiang University ^{\$}School of Engineering, Westlake University ^{\$}Institute of Advanced Technology, Westlake Institute for Advanced Study {cuileyang, zhangyue}@westlake.edu.cn senyang.stu@gmail.com

Constituency Parsing

- Tree Structure $s(T) = \sum_{(i,j,l)\in T} s(i,j,l^c)$
- Token Representation $\mathbf{H}_1^n = \{\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_n\}$
- Span Representation $\mathbf{v}_{i,j} = \mathbf{h}_j \mathbf{h}_i$
- Scoring Function $s(i, j, \cdot) = \mathbf{W}_2^{c} \operatorname{ReLU}(\mathbf{W}_1^{c} \mathbf{v}_{i, j} + \mathbf{b}_1^{c}) + \mathbf{b}_2^{c}$
- Training $\mathcal{L}_{cons} = \max\left(0, \max_{T \neq T^*}[s(T) + \Delta(T, T^*)] s(T^*)\right)$
- Inference $\hat{T} = \operatorname*{argmax}_{T} s(T)$
- Research Question
 - Model makes local prediction on each span representation.
 How to model the output dependency in the encoder?

Auxiliary training objective 1: Pattern Prediction

• Pattern prediction
$$\hat{p}_{i,j} = \text{Softmax} \left(\mathbf{W}_2^{\text{p}} \text{ReLU}(\mathbf{W}_1^{\text{p}} \mathbf{v}_{i,j} + \mathbf{b}_1^{\text{p}}) + \mathbf{b}_2^{\text{p}} \right)$$

• Pattern Loss
$$\mathcal{L}_{pat} = -\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} \log \hat{p}_{i,j}$$

- Auxiliary training objective 2: legality between pattern and constituent
 - Constituent span (i_t, j_t, l_t^c) is a subtree of pattern span (i_t, j_t, l_t^p)
 - -> l_t^c is legal to co-occurrence with $l_{t'}^p$.

Both NNS and NP are legal to occur as sub-trees of the 3-gram pattern {VBD NP PP} S or ADJP cannot be contained with in {VBD NP PP} based on the grammar rule.

- Auxiliary training objective 2: legality between pattern and constituent
 - Constituent span (i_t, j_t, l_t^c) is a subtree of pattern span (i_t, j_t, l_t^p)
 - -> l_t^c is legal to co-occurrence with $l_{t'}^p$.

○ Instance-level Consistency $\hat{\mathbf{Y}} = \text{Sigmoid} ((\mathbf{W}_2^c^{\mathsf{T}} \mathbf{U}_1 \mathbf{V}) (\mathbf{V}^{\mathsf{T}} \mathbf{U}_2 \mathbf{W}_2^p))$

 $\circ \quad \text{Corpus-level Consistency} \qquad \hat{\mathbf{Y}} = \text{Sigmoid} \left(\mathbf{W}_{2}^{c} \mathbf{U} \mathbf{W}_{2}^{pT} \right)$ $\circ \quad \text{Consistency Loss} \qquad \mathcal{L}_{reg} = -\sum_{a=1}^{|L^{c}|} \sum_{b=1}^{|L^{p}|} y_{a,b} \log \hat{y}_{a,b}$

The three training objectives in NFC

Model	LR	LP	F1
Liu and Zhang (2017) \diamond	-	-	95.71
Kitaev and Klein (2018)	95.46	95.73	95.59
Zhou and Zhao (2019)	95.51	95.93	95.72
Zhou and Zhao (2019) *	95.70	95.98	95.84
Zhang et al. (2020b)	95.53	95.85	95.69
Nguyen et al. (2020)	-	-	95.48
Tian et al. (2020)	95.58	96.11	95.85
This w	ork		
Kitaev and Klein (2018) †	95.56	95.89	95.72
NFC w/o \mathcal{L}_{reg}	95.49	96.07	95.78
NFC	95.70	96.14	95.92

Model	LR	LP	F1			
Liu and Zhang (2017) \diamond	-	-	91.81			
Kitaev and Klein (2018)	91.55	91.96	91.75			
Zhang et al. (2020b)	92.04	92.51	92.27			
Zhou and Zhao (2019)	91.14	93.09	92.10			
Tian et al. (2020)	92.14	92.25	92.20			
This work						
Kitaev and Klein (2018) †	91.80	92.23	91.98			
NFC w/o \mathcal{L}_{reg}	91.87	92.40	92.13			
NFC	92.17	92.45	92.31			
w/ External Dependency Supervision						
Zhou and Zhao (2019) *	92.03	92.33	92.18			
Mrini et al. (2020)*	91.85	93.45	92.64			

Model performance on PTB

Model performance on CTB

In Domain Syntactic Parsing

F1 scores versus minimum constituent span length on PTB test set

• NFC significantly outperform baseline when the minimum span length increases.

Model	In-domain		Cross-domain					
WIUUEI	РТВ	Bio	Dialogue	Forum	Law	Literature	Review	Avg
Liu and Zhang (2017)	95.65	86.33	85.56	85.42	91.50	84.84	83.53	86.20
Kitaev and Klein (2018)	95.72	86.61	86.30	86.29	92.08	86.10	83.88	86.88
NFC	95.92	86.43	89.85	88.52	95.43	90.75	88.10	89.85

Zero-shot performance on cross-domain test set

Model	Rich resource			Low Resource			Ava		
widder	French	German	Korean	Avg	Hungarian	Basque	Polish	Avg	Avg
Kitaev and Klein (2018)	87.42	90.20	88.80	88.81	94.90	91.63	96.36	94.30	91.55
Nguyen et al. (2020)	86.69	90.28	88.71	88.56	94.24	92.02	96.14	94.13	91.34
Kitaev and Klein (2018) †	87.38	90.25	88.91	88.85	94.56	91.66	96.14	94.12	91.48
NFC	87.51	90.43	89.07	89.00	94.95	91.73	96.33	94.34	91.67

Multi-lingual performance

• Pearson correlation of n-gram pattern distribution between PTB training set and different test set.

(a) F1 scores measured by 3-gram pattern.

(b) F1 scores measured by 2-gram pattern.

• NFC significantly outperform baseline measured by pattern-level f1.

Learned Incremental Representations for Parsing

Nikita KitaevThomas LuDan KleinComputer Science DivisionUniversity of California, Berkeley{kitaev,tlu2000,klein}@berkeley.edu

The little boy likes red tomatoes

stack	buffer	action	node
[]	[The little]	NT-S	1
[(S]	[The little]	NT-NP	2
[(S (NP]	[The little]	SHIFT	3
[(NP The]	[little boy]	SHIFT	4
[The little]	[boy likes]	SHIFT	(5)
[little boy]	[likes red]	REDUCE	7
•••	•••	•••	•••

Syntactic tree

Shift-reduce parser

whether the preposition "on" attaches to noun "proposal" or the verb "approved."

	E	/pe		
	Bi	Bi (↔)		
Representation	BERT	GPT-2	GPT-2	
Span Classification (Kitaev et al., 2019)	95.59	95.10 [†]	93.95 [†]	
Attach-Juxtapose (Yang and Deng, 2020)	95.79	94.53 [†]	87.66 [†]	
Learned (This work)	95.55		94.97	

Model Performance on PTB.

- In main clauses, subjects and verbs are assigned symbols 16 and 6.
- Subordinate clauses, however, tend to use alternate symbols 15 and 13 for subject nouns and verb, respectively.
- Relative clauses use 20 and 26.

Tags capture structural context beyond the current word!

Thank You