
Towards Better Transformer
For Long-range Sequence Modeling

Haofei Yu 03/31/2022

Outline

1.Background: Logic behind Efficient Transformer

2.RoadMap: Research Lines in Efficient Transformer

3.Example Works: Methods for Building Long-term Memory

4.Challenges: Need for Benchmark and New Evaluation Metric

5.Future Works: Ensemble Methods and Sparse Modeling

Background

Why We Need to Research Long-range Sequence Modeling?
Long Sequence Modeling Scenario is common:
1. Wikitext-103 / PG-19 / Enwik8 / Arxiv / Github are common datasets for Long-range

Language Modeling
2. Besides Pure Text Language Modeling, Music / Speech / Video / Image / Document-level

Machine Translation can be considered as Long-range Sequence Modeling Task

Why Vanilla Transformer cannot do Long-range Sequence Modeling?
1. Memory Cost is high when input sequence length is too long
2. Computation Cost is high when input sequence length is too long
3. Conflict between Long-term Dependency and Memory/Computation Cost

Natural Ideas Based on the Conflict:
1. Use external independent memory to augment Language Modeling to gain long-term

dependency and focus on relatively short span
2. Utilize internal model sparsity to reduce memory cost and focus on long span
3. Replace original attention module with linear-time attention mechanisms and focus on long

span

RoadMap

Today’s Topic focus on Long-Term Memory
Modeling. It can be considered as a
combination of Recurrence, Memory and
Learnable Patterns

1.Adaptive Semiparametric Language Models
(from DeepMind) lies in the crossing point
between recurrence and memory

2. Not All Memories are Created Equal:
Learning to Forget by Expiring (from FAIR)
lies in the crossing point between memory
and learnable patterns

Methods RoadMap in Efficient Transformer

Example Works

1. Adaptive Semiparametric Language Models (DeepMind)

What is the motivation behind this paper?
To jointly use Long-term Memory and Short-term Memory with the gate mechanism
(Approximately the combination of kNN-LM and Transformer-XL)

How to model long-term memory in this paper?
Equip Models with external independent K-V offline database

What is the memory mechanism in this paper?
Combine Short-term and Long-term Memory with Gate Mechanism

Short-term Memory: have the same setting as Transformer-XL
Long-term Memory: Key-Value Database

(Key is a vector representation for previous condition context,
Value is a vector representation for predicted target token,
Build based on pretrained encoder like BERT)

Gate Mechanism: Allow model to use Long-term Memory for Strong Prediction
Allow model to use Short-term Memory for Easy Prediction

Example Works

1. Adaptive Semiparametric Language Models (DeepMind)

How to use long-term memory in training and inference stage?
1.Pre-compute K-V long-term memory offline
2.Do kNN search in K-V Database
3.Use Context-related Gate Mechanism to token-level adaptively decide use short-
term or long-term memory

What is its advantage compared with kNN-LM?
1.kNN-LM’s hyper-parameter is tuned on dev set only, SPALM is tuned by
training
2.kNN-LM’s hyper-parameter is fixed for each token, SPALM is adaptive

Example Works

1. Adaptive Semiparametric Language Models (DeepMind)

What Experiment can confirm its performance?

Test on WikiText-103 (word-level). Test on WMT Dataset(word-level). Test on EnWiki8(char-level)

Example Works

1. Adaptive Semiparametric Language Models (DeepMind)

Any Extra Findings?

Test on WikiText-103 (word-level).

kNN-LM and SPALM model have complementary function:
incorporating long-term memory during training and
incorporating probabilities during testing have additional
effects

Example Works

1. Adaptive Semiparametric Language Models (DeepMind)

What is the function of Long-Term Memory?

Long-Term Memory helps model to generate common phrases and named entities (that exist in the training set),
especially when they are encountered for the first time and have not appeared in the extended context

Example Works

1. Adaptive Semiparametric Language Models (DeepMind)

What is exactly the function of the Gate Mechanism? Is it really working to use long-term memory?

Gate Mechanism helps the model to achieve adaptive token-level long-term/short-term switch
Some Dimensions and some tokens are proved to be strongly effected by long-term memory

Example Works

1. Adaptive Semiparametric Language Models (DeepMind)

What is the drawbacks to use external independent memory to build long-term memory?

Needs a lot of extra offline computation!
Takes 6–8 hours to obtain neighbors for WikiText-103 and enwik8 with 1,000 CPUs and 18 hours for WMT with
9,000 CPUs

Is the kNN neighbor the more the better?

Nope. Too many neighbors can bring possible noise and will harm the performance.

Example Works

2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

What is the motivation of this paper?
Scale Transformer-XL to VERY LONG sequence
Treat the activation time of hidden states as learnable
pattern
The whole mechanism is designed for scalability

What is the definition of Expire Span?
The Expire Span is an integer for each hidden states in
each layer.
It ranges from 0 to sequence total span.
Its function is to decide the living period for each hidden
states in the attention mechanism.

Example Works

2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

How to Train the Expire Span? (Key Design)

Overall, it is just an additional loss for attention mechanism.
In detail, the hardest point is to design gradient for attention mask as
a function of expire span. And it is done using monotonically
decreasing function related to time for soft masking.

Example Works

2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

What feature are Expire-Span want to design experiment to prove?

1. This method can gain long-term memory far away
2. This method can scale to VERG LONG sequence with efficient memory cost

Example Works

2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

How to prove this design really capture long-term dependency?

1) Memorize One Piece of Key Information (Corridor Task)
2) Memorize Sequence Information (Portal Task)
3) Memorize Sequence Information with Distractor (Instruction Task)

Example Works

2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

How to prove this design really capture long-term dependency with efficient memory?

Example Works

2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

How to prove this design really can scale to VERY LONG sequence with long-term dependency?

Copy task on enwik8 Performance on enwik8

Example Works

2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

How to prove this design have efficient memory cost?

Example Works

2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

How to prove this design have efficient memory cost?

Example Works

2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

How to prove expire-span performance improvements come from long-term information?

C1. Build A Benchmark for Decoder-only Efficient Transformer with Standard Tasks
Existing Work: Long range arena: A benchmark for efficient transformers Build a Benchmark for
Encoder-only Efficient Transformer, but without Decoder-Only Benchmark for Generation
It defines a suite of tasks consisting of sequences ranging from 1K to 16K tokens including multimedia

Challenges

C2.Find a Different Evaluation Metric For Long-range Sequence Generation to evaluate

Existing Metrics only include Perplexity and Bit-Per-Character to evaluate Language Model
Long-range Sequence Generation may face structure problems except fluency.

In the paper Recipes for building an open-domain chatbot from FAIR, authors mentioned that:

Challenges

Review the RoadMap for Efficient Transformer

Future Works

1. To ensemble different forms of methods
concerning with memory modeling to achive
a more flexible architecture (Adaptive
Semiparametric Language Models)

2. In the RoadMap, one separate but novel
part is related to Sparse (as a new
independent line of work)
Sparse models like MoE typically achieve a
high parameter to FLOP ratio by sparsely
activating a subset of parameters or
activations.

Thanks for Listening

