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Why We Need to Research Long-range Sequence Modeling?

Long Sequence Modeling Scenario is common:

1. Wikitext-103 / PG-19 / Enwik8 / Arxiv / Github are common datasets for Long-range
Language Modeling

2. Besides Pure Text Language Modeling, Music / Speech / Video / Image / Document-level
Machine Translation can be considered as Long-range Sequence Modeling Task

Why Vanilla Transformer cannot do Long-range Sequence Modeling?

1. Memory Cost is high when input sequence length is too long

2. Computation Cost is high when input sequence length is too long

3. Conflict between Long-term Dependency and Memory/Computation Cost

Natural Ideas Based on the Conflict:

1. Use external independent memory to augment Language Modeling to gain long-term
dependency and focus on relatively short span

2. Utilize internal model sparsity to reduce memory cost and focus on long span

3. Replace original attention module with linear-time attention mechanisms and focus on long
span
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Methods RoadMap in Efficient Transformer i

Perceiver
(Jaegle et al., 2021)

TokenLearner
(Ryoo et al., 2021)

Transformer-XL

Nystromformer
(Dai et al., 2019) y

(Xiong et al., 2019)

Today’s Topic focus on Long-Term Memory
Modeling. It can be considered as a
combination of Recurrence, Memory and
Learnable Patterns

Memory / Memory
Downsampling Compressed

Set Transformer
(Lee et al., 2019)

Recurrence

Compressive

Transformer
(Rae et al.,, 2018)

Clusterformer

ROUti ng (Wang et al., 2020)
. . . Funnel Poolingformer T{Raonetsj?zgrzger Reformer
1.Adaptive Semiparametric Language Models Performer Transformer ~ @smostal. 2020 ” (Ktaer ol 2620
. . . . . (Choromanski et al., 2020) (i, 270)
(from DeepMind) lies in the crossing point U I
between recurrence and memory R Longformer _ Swin |
(Beltagy etal, 2020)  Transformer Sinkhorn CIus;(ered Attegmon
iuetal, Vyas et al., 2020
T — Low Rank / Long Short e 2 Transforme
. . . (Tay et al., 2020b)
2. Not All Memories are Created Equal: weses 2 Kernels  (Transformer)  Fixad/Factorized/

Adaptive

i 1 , Random Patterns Sparse
Learnmg to Forget by Explrmg (from FAIR) Random Feature Attention | Synthesizer | Sparse
(Peng et al, 2021) (Tay et al., 2020a) BI ) CC-Net GShard !
ockwise Transformer (Huang et al, 2018) (Lepikhin et al, 2020) (Correia et al, 2019)

lies in the crossing point between memory
and learnable patterns

(Qiu et al., 2019)
Linear
Transformer

Sparse  ctam

(Du et al., 2021)

Sparse Transformer

(Katharopoulos et al., 2020) Image Transformer (Child et al.,, 2019) Switch
P tal, 2018
(Parmar et a ) Transformer Product Key
Axial Transformer (Fedus etal., 2021) Memory

(Hoetal,, 2019) (Lample et al., 2019)

Scaling Transformer
(Jaszczur et al,, 2021)
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1. Adaptive Semiparametric Language Models (DeepMind) key-value
long-term memory aggregate
What is the motivation behind this paper? . Fois
To jointly use Long-term Memory and Short-term Memory with the gate mechanism SGEIEve
(Approximately the combination of kNN-LM and Transformer-XL)
gate ‘
How to model long-term memory in this paper? >
Equip Models with external independent K-V offline database seare
What is the memory mechanism in this paper? £y ForoE Y
Combine Short-term and Long-term Memory with Gate Mechanism HENE .
| | | | ] I 1 |

Short-term Memory: have the same setting as Transformer-XL T Tt-a wE

short-term memory transformer

Long-term Memory: Key-Value Database
(Key is a vector representation for previous condition context,
Value is a vector representation for predicted target token,
Build based on pretrained encoder like BERT)
Gate Mechanism: Allow model to use Long-term Memory for Strong Prediction
Allow model to use Short-term Memory for Easy Prediction
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1. Adaptive Semiparametric Language Models (DeepMind) key-value

long-term memory aggregate

How to use long-term memory in training and inference stage?
1.Pre-compute K-V long-term memory offline

2.Do kNN search in K-V Database

3.Use Context-related Gate Mechanism to token-level adaptively decide use short- gate @
term or long-term memory

. Ti41
retrieve

search
What is its advantage compared with kNN-LM? <
1.kNN-LM'’s hyper-parameter is tuned on dev set only, SPALM is tuned by £y ForoE Y
training A 4 4 4 t 4+ ¢+ 4
2. kNN-LM'’s hyper-parameter is fixed for each token, SPALM is adaptive T rT T

short-term memory transformer



1. Adaptive Semiparametric Language Models (DeepMind)

What Experiment can confirm its performance?

Test on WikiText-103 (word-level).

Test on WMT Dataset(word-level).

Model #Params | Dev | Test Model # Params Dev Test
Transformer-XL2 257M — 18.3 Transformer 148M 16.0 16.3
Adaptive Input® 247TM 18.0 | 18.7 Transformer-XL 148M 15.6 15.5
Compressive® 25TM 16.0 | 17.1 ENN-LM 148M 13.1 15.2
ENN-LM4 247TM 16.1 | 16.1 SpALM 148M 13.0 14.0
Transformer 142M 20.8 | 21.8
= | Transformer-XL 142M | 18.7 | 19.6
I | KNN-LM 142M 18.1 | 18.5
= SpraLm 142M 17.9 | 18.8
— + kNN 17.6 | 18.0
Q | Transformer-XL 142M 18.3 | 19.1
K | kNN-LM 142M 17.7 | 18.0
II'| SpaLM 142M 17.4 | 18.3
= < + kNN 17.2 | 17.6
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Test on EnWiki8(char-level)

Model # Params | Dev | Test
18L Transformer-XL? 88M - 1.03
24L Transformer-XL? 27TM - 0.99
Longformer® 102M — | 0.99
Compressive! 27TM — 1097
Transformer 104M 1.07 | 1.05
Transformer-XL 104M 1.03 | 1.01
kNN-LM 104M 1.04 | 1.02
SpALM 104M 1.02 | 1.00
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1. Adaptive Semiparametric Language Models (DeepMind)

Any Extra Findings?

Test on WikiText-103 (word-level).

Model # Params | Dev | Test
Transformer-XL? 257TM - 18.3
Adaptive Input® 247TM 18.0 | 18.7
Compressive® 257TM 16.0 | 17.1
ENN-LM4 247TM 16.1 | 16.1
Transformer 142M 20.8 | 21.8

= | Transformer-XL 142M | 18.7 | 19.6
| | KNN-LM 142M 18.1 | 18.5
= SpALM 142M 17.9 | 18.8
— + kNN 17.6 | 18.0

Q | Transformer-XL 142M 18.3 | 19.1
K | kENN-LM 142M 17.7 | 18.0
Il | SpaLM 142M 17.4 | 18.3
= < + kNN 17.2 | 17.6

kNN-LM and SPALM model have complementary function:
incorporating long-term memory during training and
incorporating probabilities during testing have additional
effects
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1. Adaptive Semiparametric Language Models (DeepMind)

What is the function of Long-Term Memory?

Long-Term Memory helps model to generate common phrases and named entities (that exist in the training set),
especially when they are encountered for the first time and have not appeared in the extended context

... Several companies have pulled their advertising from the TV show following the revelations ...
... Liberal Democrat leader Jo Swinson has said she would work with Donald Trump in government as ...
... Additionally , the airline has purchased six Boeing 787 - 9 Dream liner aircraft that are scheduled ...

Figure 4: Three example sequences from the WMT test set. We highlight words where both prx;. and pspa v are
larger than pyansformer + 0.1 1n green and pspa v > prxr + 0.1 in blue. See §5.2 for details.
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1. Adaptive Semiparametric Language Models (DeepMind)
What is exactly the function of the Gate Mechanism? Is it really working to use long-term memory?

Gate Mechanism helps the model to achieve adaptive token-level long-term/short-term switch
Some Dimensions and some tokens are proved to be strongly effected by long-term memory
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1. Adaptive Semiparametric Language Models (DeepMind)

What is the drawbacks to use external independent memory to build long-term memory?

Needs a lot of extra offline computation!

Takes 6-8 hours to obtain neighbors for WikiText-103 and enwik8 with 1,000 CPUs and 18 hours for WMT with
9,000 CPUs

Is the kNN neighbor the more the better?

Nope. Too many neighbors can bring possible noise and will harm the performance.

# NNs | Perplexity  Table 5: SpaLMm perplex-
1 18.0 ity on the WikiText-103
& 18.0 development set with
4 17.9 different numbers of
8 18.2 neighbors.

16 18.4
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2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

What is the motivation of this paper?
Scale Transformer-XL to VERY LONG sequence

Treat the activation time of hidden states as learnable
pattern

The whole mechanism is designed for scalability

What is the definition of Expire Span?

The Expire Span is an integer for each hidden states in
each layer.

It ranges from 0 to sequence total span.

Its function is to decide the living period for each hidden
states in the attention mechanism.

Expire-span P E Ot
. . output
R E———— I
es — \ > Attention
e2 mEm— : / T
T | query
€1 I =

h; hy hs hy hs b, time

Figure 1. Expire-Span. For every memory h;, we compute an
EXPIRE-SPAN e; that determines how long it should stay in mem-
ory. Here, memories h2, hs are already expired at time ¢, so the
query g; can only access {h;, hs, h,} in self-attention.
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2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)
€; = LJ(WThz’ -4 b)
How to Train the Expire Span? (Key Design)
rii = e; — (t —1)
Overall, it is just an additional loss for attention mechanism.

. .. . ) i my; = max(0, min(1,1 4+ ry; /R
In detail, the hardest point is to design gradient for attention mask as ‘ ( ( i/ R))

. . o : : —
a functlf)n of expire span. And 1.t is done using m.onotomcally a = it Z alv;.
decreasing function related to time for soft masking. E]‘ My;Qtj -
1 1
L SIIES 3) e
m(z) , t t i<t

Figure 2. Soft Mask :

Liowa = Lugc+ @ Y _ €;/T
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2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

What feature are Expire-Span want to design experiment to prove?

1. This method can gain long-term memory far away
2. This method can scale to VERG LONG sequence with efficient memory cost
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2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

How to prove this design really capture long-term dependency?

1) Memorize One Piece of Key Information (Corridor Task)
2) Memorize Sequence Information (Portal Task)
3) Memorize Sequence Information with Distractor (Instruction Task)

‘ l Receive Instruction
Memorize Color Reach Correct Door .

aooojoo | TR ™8 IO

L | | | |

|
. Long Distractor Text i
Wrong Door Choice g Execute Instruction

~
-

Long Corridor

Figure 3. Corridor Task (left)- Agents must memorize the color of an object and walk through the door of the corresponding color at
the end of a long corridor. Portal Task (middle)- An agent must trial-and-error to memorize the sequence of doors. Instruction Task
(right)- A model must recognize instructions, memorize them, and execute when at the correct location.
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2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)
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How to prove this design really capture long-term dependency with efficient memory?

Memorize Color Reach Correct Door
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Long Corridor
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2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

O

How to prove this design really can scale to VERY LONG sequence with long-term dependency?

Performance on enwik8

Copy task on enwik8
Model Maximum span  Accuracy (%)
Transformer-XL 2k 26.7
EXPIRE-SPAN 16k 294
EXPIRE-SPAN 128k 52.1

Table 1. Copy Task. We report accuracy on the test set.

Model Params Test
Small models

Trans-XL 12L (Dai et al., 2019) 41M 1.06
Adapt-Span 12L (Sukhbaatar et al., 2019a) 39M 1.02
Our Trans-XL 12L baseline 38M 1.06
EXPIRE-SPAN 12L 38M  0.99
Trans-XL 24L (Dai et al., 2019) 27TM 0.99
Sparse Trans. (Child et al., 2019) 95M 0.99
Adapt-Span 24L (Sukhbaatar et al., 2019a) 209M 0.98
All-Attention (Sukhbaatar et al., 2019b) 114M 0.98
Compressive Trans. (Rae et al., 2020) 27TM 0.97
Routing Trans. (Roy et al., 2020) - 0.99
Feedback Trans. (Fan et al., 2020b) 7IM  0.96
EXPIRE-SPAN 24L 208M 0.95
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2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

How to prove this design have efficient memory cost?

1.08 - ~ 1127 B Trans-XL
QJ .
E g 1.10 - B Expire-span
0 : B —@— Trans-XL é 0 Adapt-span
e —— Adapt-span o 0SS B Compressive
= &
= —&— Expire-span 2 1.06 -
> 1.04 1 +
a S 1.044

1.02 1.02 -

200 400 600 800 1000 1200 1k 2k s 16k 16k 16k
Memory size Maximum span L



2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

How to prove this design have efficient memory cost?

O

Model Performance = GPU Memory (GB) Time/Batch (ms)
Transformer-XL 1.06 bpb 27 649
Enwik8 Compressive Transformer 1.05 bpb 21 838
W Adaptive-Span 1.04 bpb 20 483
EXPIRE-SPAN 1.03 bpb 15 408
Compressive Transformer 1.07 bpc 17 753
Char-level PG-19 Adaptive-Span 1.07 bpc 13 427
EXPIRE-SPAN 1.07 bpc 15 388
Compressive Transformer 63.8% Error 12 327
Object Collision Adaptive-Span 59.8% Error 17 365
EXPIRE-SPAN 52.2% Error 12 130
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2. Not All Memories are Created Equal: Learning to Forget by Expiring (FAIR)

How to prove expire-span performance improvements come from long-term information?

16384
@ ] N TSV M D S
powerful 1influence 1in Egypt. To [[Alexander the Great]] 1480 the whole [[Guinea coast]] was
(b) I I -l 8192 g L =16384| [ [[I | |4
5 .
powerful 1nfluence 1n somewhere. To [[Alexander the Gre N 1480 the whole [[Guinea coast]] was
N W o —
0 .
powerful 1nfluence 1n Humpty Dumpty. To [[Alexander the 1489 the whole [[Guinea coast]] was

Figure 8. Expiration in EXPIRE-SPAN on Enwik8. In (a), the model strongly mem- Figu.re 9. Accur'flcy Neefls Memory. As tbe
orizes two areas, “Egypt” and “Alexander”. In (b), if we replace “Egypt” with “some- maximum span is artificially decreased at in-

where”, then it’s forgotten fast. In (¢), we insert “Humpty Dumpty” and the model f.erer%ce time from 16k to only 1k, the predic
retains these rare words in memory. tion is less accurate.



Challeng

C1. Build A Benchmark for Decoder-only Efficient Transformer with Standard Tasks

Existing Work: Long range arena: A benchmark for efficient transformers Build a Benchmark for
Encoder-only Efficient Transformer, but without Decoder-Only Benchmark for Generation

O

It defines a suite of tasks consisting of sequences ranging from 1K to 16K tokens including multimedia

Model ListOps Text Retrieval Image  Pathfinder Path-X Avg
Transformer 36.37 64.27 57.46 42 .44 71.40 FAIL 54.39
Local Attention 15.82 52.98 53.39 41.46 66.63 FAIL 46.06
Sparse Trans. 17.07 63.58 59.59 44.24 71.71 FAIL 51.24
Longformer 35.63 62.85 56.89 42.22 69.71 FAIL 53.46
Linformer 35.70 53.94 52.27 38.56 76.34 FAIL 51.36
Reformer 37.27 56.10 53.40 38.07 68.50 FAIL 50.67
Sinkhorn Trans. 33.67 61.20 53.83 41.23 67.45 FAIL 51.39
Synthesizer 36.99 61.68 54.67 41.61 69.45 FAIL 52.88
BigBird 36.05 64.02 59.29 40.83 74.87 FAIL 55.01
Linear Trans. 16.13 65.90 53.09 42.34 75.30 FAIL 50.55
Performer 18.01 65.40 53.82 42.77 77.05 FAIL 51.41
Task Avg (Std) | 29(9.7) 61 (4.6) 55(2.6) 41(1.8) 72 (3.7) FAIL | 52(2.4)
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C2.Find a Different Evaluation Metric For Long-range Sequence Generation to evaluate

Existing Metrics only include Perplexity and Bit-Per-Character to evaluate Language Model
Long-range Sequence Generation may face structure problems except fluency.

In the paper Recipes for building an open-domain chatbot from FAIR, authors mentioned that:

etc. While several recent works have extended neu-
ral architectures to possess longer contexts (Dai
et al., 2019; Rae et al., 2020; Kitaev et al., 2020;
Beltagy et al., 2020), we have neither implemented
those, nor do we believe the current evaluation
setup is the right one for measuring their success.

O
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Future V

Review the RoadMap for Efficient Transformer

1. To ensemble different forms of methods
concerning with memory modeling to achive
a more flexible architecture (Adaptive
Semiparametric Language Models)

2. In the RoadMap, one separate but novel
part is related to Sparse (as a new
independent line of work)

Sparse models like MoE typically achieve a
high parameter to FLOP ratio by sparsely
activating a subset of parameters or
activations.

Performer \
(Choromanski et al., 2020) v

Low-Rank Transformer
(Winata et al., 2020)

Low Rank / /| ong short

Linformer
(Wang et al., 2020b)

Random Feature Attention
(Peng et al., 2021)

Transformer Sparse Transformer (Du etal, 2021)
(Katharopoulos et al, 2020) Image Transformer (ChideteL o) Switch
P: tal., 2018
(FRmneee. 2018) Transformer Product Key
Axial Transformer (Fedus et al., 2021) Memory
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Charformer
(Tay et al., 2021)

TokenLearner

Perceiver (Ryoo et al., 2021)

(Jaegle et al., 2021)
Transformer-XL

] Nystromformer
(Dai et al., 2019)

(Xiong et al., 2019)
Memory / Memory

Recurrence .
Downsampling Compressed

Compressive

Transformer

Set Transformer
(Rae et al., 2018)

(Lee etal., 2019)
. Clusterformer
Routing (Wang et al., 2020)

Transformer

Funnel Poolingformer (Roy et al, 2020)

Transformer (Zhang et al., 2021)
(Dai et al., 2020)
=C Big Bird

(Ainslie et al., 2020) (Zaheer et al., 2020)

Reformer
(Kitaev et al., 2020)

Longformer Swin

(Beltagy et al., 2020) Transformer
(Liu et al., 2020)

o Clustered Attention
Sinkhorn (Vyas et al,, 2020)

Transforme
(Tay et al., 2020b)

Transformer
(Zhu et al,, 2021)

Kernels Fixed/Factorized/

Random Patterns
CC-Net

(Huang et al., 2018)

Adaptive
Sparse

GShard Transformer
(Lepikhin et al., 2020) (Correia et al., 2019)

Sparse Glam

Synthesizer
(Tay et al., 2020a)

Blockwise Transformer
(Qiu et al., 2019)

Linear

(Ho et al,, 2019) (Lample et al., 2019)

Scaling Transformer
(Jaszczur et al., 2021)
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Thanks for Listening




