

Towards Better Retrievers for Knowledge-intensive Tasks

Xinting Huang 2022.03.16

1. Backgrounds: Knowledge-intensive tasks and retriever learning

2. Challenges: Generalization abilities of neural retrievers

3. Attempts: Synthetic data generation

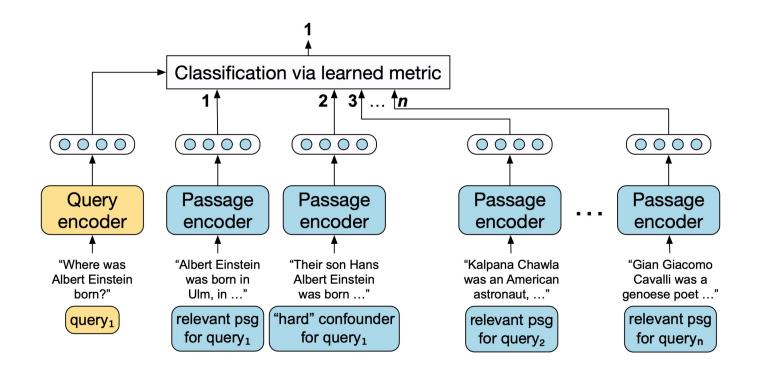
4. Potentials:

5. Conclusions

- Knowledge-Intensive Tasks
 - Tasks that require access to large, external knowledge sources
 - The knowledge sources can take various forms: plain text (e.g., Wikipedia passages), structured knowledge (e.g., tables)
 - Solving knowledge-intensive tasks commonly follow a retrieve-and-read/generate paradigm.

Slot Filling		Knowledge source:		Dialogue
INPUT: Star Trek [SEP] creator		5.9 Million Wikipedia pages]	I am a big fan of Star Trek, the American franchise created by Gene Roddenberry. I don't know much about it. When did the
OUTPUT: Gene Roddenberry PROVENANCE: 17157886-1	zsRE —	Star Trek ¹⁷¹⁵⁷⁸⁸⁶ Star Trek is an American media franchise based on the science fiction television series created by Gene Roddenberry. ¹ [] It followed the interstellar adventures of Captain James T. Kirk (William Shatner) and his crew aboard		first episode air? It debuted in 1996 and aired for 3 seasons on NBC. What is the plot of the show?
Open Domain QA		the starship USS "Enterprise", a space exploration vessel built by the United Federation of Planets in the 23rd century. ² The "Star Trek" canon includes		William Shatner plays the role of Captain Kirk. He did a great job.
When did Star Trek go off the air		"The Original Series", an animated series, five spin-off television series, the film franchise, and further adaptations in several media. ³ [] The original 1966–69 series featured William Shatner as Captain James T.		PROVENANCE: 17157886-2 WOW
оитрит: June 3, 1969		Kirk, Leonard Nimoy ⁴ as Spock, DeForest Kelley as Dr. Leonard "Bones"		Fact Checking
provenance: 17157886-5	NQ	McCoy, James Doohan as Montgomery "Scotty" Scott, Nichelle Nichols as Uhura, George Takei as Hikaru Sulu, and Walter Koenig as Pavel Chekov. During the series' first run, it earned several nominations for the Hugo Award		INPUT: Star Trek had spin-off television series.
	(for Best Dramatic Presentation, and won twice. [] NBC canceled the show after three seasons; the last original episode aired on	$ \rangle$	output: Supports
		<u>June 3, 1969⁵</u> . []		PROVENANCE: 17157886-3 FEV

- Dense Retriever for Knowledge Selection
 - Query and each passage are encoded, relevancy is determined by the distance of their vectors
 - Training is based on a contrastive loss, using triplets of query, a relevant passage, and a set of irrelevant passages
 - Training involves both self-supervised and supervised learning



Challenges: Test-Train Overlapping

- Investigating Test-Train Overlapping (21EACL, Facebook)
 - This work explores the test sets of three open-domain QA datasets
 - Two types of test-train overlap are identified: question and answer
 - Question: a random subset annotated by humans;
 - Answer: lexical similarities;
 - Experiments are conducted on NaturalQuestions, TriviaQA, and WebQuestions; The knowledge source is Wikipedia passages
 - All models perform significantly higher on memorizable questions;
 - The drop is severe for almost all models, with an average absolute drop of 25% with respect to total performance.

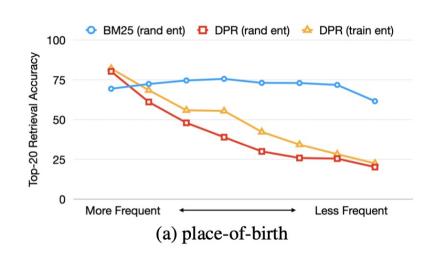
Dataset	% Answer overlap	% Question overlap
NaturalQuestions	63.6	32.5
TriviaQA	71.7	33.6
WebQuestions	57.9	27.5

N	lodel	Open NaturalQuestions						
14	Widder		Question Overlap	Answer Overlap Only	No Overlap			
Open book	RAG DPR FID	44.5 41.3 51.4	70.7 69.4 71.3	34.9 34.6 48.3	24.8 19.3 34.5			
Closed book	T5-11B+SSM BART	35.2 26.5	76.5 67.6	21.0 10.2	8.4 0.8			
Nearest Neighbor	Dense r TF-IDF	26.7 22.2	69.4 56.8	7.0 4.1	0.0 0.0			

Challenges: Simple Query Rewriting

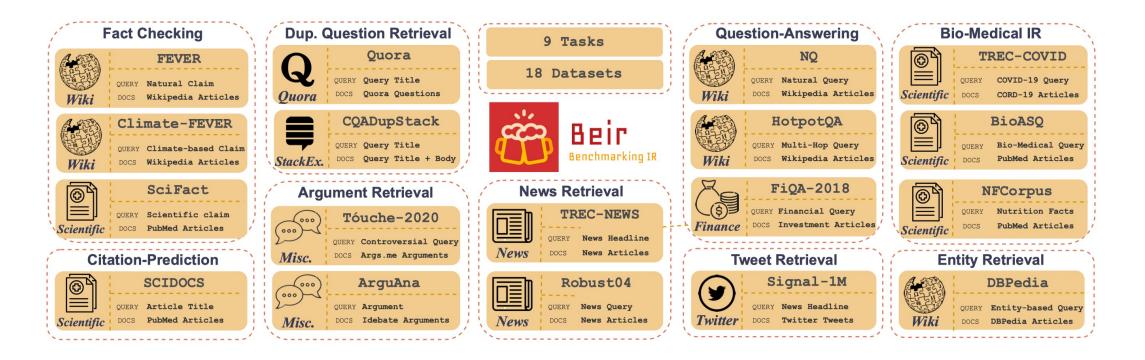
- Simple Query Rewriting (21EMNLP, Princeton)
 - Exploring the retriever abilities to handle simple, entity-centric questions
 - Collecting an evaluation benchmark using manually defined templates to convert Wikipedia facts, i.e., <subject, relation, object>
 - It still clearly DPR is outperformed by BM25. The gaps are especially large on questions about person entities.
 - The effects of entity frequency is further explored.
 - DPR representations are much better at representing the most common entities as well as entities observed during training
 - What if the challenging queries can be seen during training?

	DPR (NQ)	DPR (multi)	BM25 -
Natural Questions	80.1	79.4	64.5
EntityQuestions (this work)	49.7	56.7	71.2
What is the capital of [E]?	77.3	78.9	90.0
Who is [E] married to?	35.6	48.1	85.9
Where is the headquarter of [E]?	70.0	72.0	85.0
Where was [E] born?	25.4	41.8	75.2
Where was [E] educated?	26.4	41.8	73.0
Who was [E] created by?	54.1	57.7	71.7
Who is [E]'s child?	19.2	33.8	82.9
(17 more types of questions)	•••	•••	



Challenges: Zero-shot Retrieval

- BEIR: Zero-shot Retrieval Benchmark (21NeuIPS, UKP Lab)
 - Organized a robust and heterogeneous benchmark comprising of 18 retrieval datasets for comparison and evaluation
 - diverse text domains, broad topics, different query lengths (between 3 and 192 words) and document lengths (between 11 and 635 words)

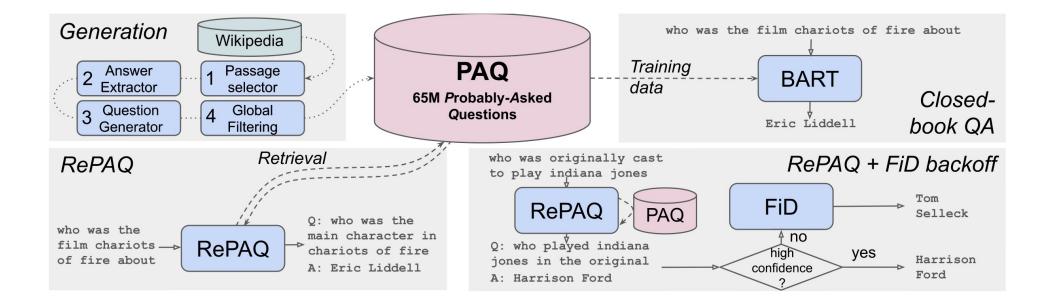


Challenges: Zero-shot Retrieval

- BEIR: Zero-shot Retrieval Benchmark (21NeuIPS, UKP Lab)
 - In-domain performance is not a good indicator for out-of-domain generalization.
 - Dense retrieval models with issues for out-of-distribution data.
 - Tradeoff between performance and retrieval latency

Model (\rightarrow)	Lexical		Sparse		Dense			Late-Interaction	Re-ranking	
Dataset (↓)	BM25	DeepCT	SPARTA	docT5query	DPR	ANCE	TAS-B	GenQ	ColBERT	BM25+CE
MS MARCO	0.228	0.296‡	0.351 [‡]	0.338 [‡]	0.177	0.388 [‡]	0.408^{\ddagger}	0.408^{\ddagger}	0.425 [‡]	<u>0.413</u> [‡]
TREC-COVID	0.656	0.406	0.538	0.713	0.332	0.654	0.481	0.619	0.677	0.757
BioASQ	0.465	0.407	0.351	0.431	0.127	0.306	0.383	0.398	0.474	0.523
NFCorpus	0.325	0.283	0.301	0.328	0.189	0.237	0.319	0.319	0.305	0.350
NQ	0.329	0.188	0.398	0.399	0.474^{\ddagger}	0.446	0.463	0.358	0.524	0.533
HotpotQA	0.603	0.503	0.492	0.580	0.391	0.456	0.584	0.534	0.593	0.707
FiQA-2018	0.236	0.191	0.198	0.291	0.112	0.295	0.300	0.308	0.317	0.347
Signal-1M (RT)	0.330	0.269	0.252	0.307	0.155	0.249	0.289	0.281	0.274	0.338
TREC-NEWS	0.398	0.220	0.258	0.420	0.161	0.382	0.377	0.396	0.393	0.431
Robust04	0.408	0.287	0.276	0.437	0.252	0.392	0.427	0.362	0.391	0.475

- Large-scale Query Generation (21TACL, Facebook)
 - PAQ (Probably-Asked Questions), automatically constructed using a question generation model and Wikipedia.
 - The synthetic data can be used for training both open-book and closed-book QA
 - The query generation pipeline includes: passage selection model; answer extraction; question generator, and filtering



• Large-scale Query Generation (21TACL, Facebook)

- PAQ (Probably-Asked Questions), automatically constructed using a question generation model and Wikipedia.
- The synthetic data can be used for training both open-book and closed-book QA
- Further address open-domain QA via question matching: directly using QA pair seen during training

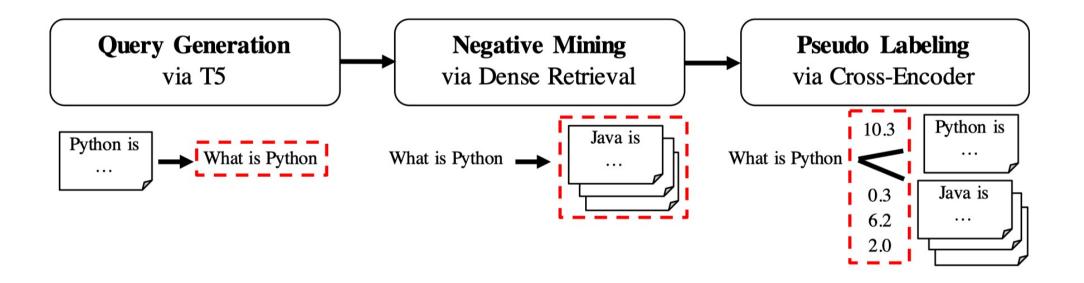
Input: who was the film chariots of fire about	A: Eric Liddell	
who was the main character in chariots of fire	A: Eric Liddell	\checkmark
who starred in the movie chariots of fire	A: Ian Charleson	X
which part did straan rodger play in chariots of fire	A: Sandy McGrath	X
who played harold in the 1981 film chariots of fire	A: Ben Cross	X
who is the main character in chariots of fire	A: Eric Liddell	\checkmark
Input : what is the meaning of the name didymus	A: twin	
what language does the name didymus come from	A: Greek	X
where does the name didymus come from in english	A: Greek	X
what does the word domus mean in english	A: home	X
how long has the term domus been used	A : 1000s of years	X
what does the greek word didyma mean	A: twin	\checkmark
Input : what is the name of a group of llamas	A: herd	
what are llamas and alpacas considered to be	A: domesticated	X
what are the figures of llamas in azapa valley	A: Atoca	X
what are the names of the llamas in azapa valley	A: Atoca	X
what is the scientific name for camels and llamas	A: Camelidae	×
are llamas bigger or smaller than current forms	A: larger	X

Table 6: Examples of top 5 retrieved QA-pairs for NQ. Italics indicate QA-pairs chosen by reranker.

- Large-scale Query Generation (21TACL, Facebook)
 - PAQ (Probably-Asked Questions), automatically constructed using a question generation model and Wikipedia.
 - Experiments

#	Model Type	Model	NaturalQuestions
1	Closed-book	T5-11B-SSM (Roberts et al., 2020)	35.2
2	Closed-book	BART-large (Lewis et al., 2021)	26.5
3	QA-pair retriever	Dense retriever (Lewis et al., 2021)	26.7
4	Open-book, retrieve-and-read	RAG-Sequence (Lewis et al., 2020b)	44.5
5	Open-book, retrieve-and-read	FiD-large, 100 docs (Izacard and Grave, 2021)	51.4
6	Open-book, phrase index	DensePhrases (Lee et al., 2021)	40.9
7	Closed-book	BART-large, pre-finetuned on PAQ	32.7
8	QA-pair retriever	RePAQ (retriever only)	41.2
9	QA-pair retriever	RePAQ (with reranker)	<u>47.7</u>
10	QA-pair retriever	RePAQ-multitask (retriever only)	41.7
11	QA-pair retriever	RePAQ-multitask (with reranker)	47.6
12	QA-pair retriever	RePAQ-multitask w/ FiD-Large Backoff	52.3

- Fined-Grained Pseudo Labeling (21Arxiv, UKP Lab)
 - Query Generator used T5 model trained on MS-MARCO
 - The generated synthetic data are used to provide pairwise supervision, instead of directly used for retriever learning
 - This technique is claimed to alleviate false positive issues.



- Fined-Grained Pseudo Labeling (21Arxiv, UKP Lab)
 - Query Generator used T5 model trained on MS-MARCO
 - The proposed GPL outperforms Qgen (direct data augmentation), and can be combined with other target-domain approaches (e.g., Inverse Cloze Task, denoising auto-encoding)

Dataset Method	FiQA	SciFact	BioASQ	TRECC.	CQADup.	Robust04	Avg.
Zero-Shot Models							
MS MARCO	26.7	57.1	52.9	66.1	29.6	39.0	45.2
PAQ	15.2	53.3	44.0	23.8	24.5	31.9	32.1
PAQ + MS MARCO	26.7	57.6	53.8	63.4	30.6	37.2	44.9
TSDAE _{MS MARCO}	26.7	55.5	51.4	65.6	30.5	36.6	44.4
BM25	23.9	66.1	70.7	60.1	31.5	38.7	48.5
Generation-based Domain A	Adaptatio	on (Previou	s State-of-ti	he-Art)			
QGen	28.2	61.7	60.0	72.8	33.6	38.5	49.1
QGen (w/ Hard Negatives)	26.0	59.6	57.7	65.0	33.2	36.5	46.3
TSDAE + QGen (Ours)	30.3	64.7	60.5	73.8	35.1	38.4	50.5
Proposed Method: Generative Pseudo Labeling							
GPL	33.1	65.2	61.6	71.7	34.4	42.1	51.4
TSDAE + GPL	33.3	67.3	62.8	74.0	35.1	42.1	52.4

- Diversification (20ACL, IBM)
 - The knowledge and query usually have many-to-many characteristics. This work focus on data augmentation for QA, instead of retrieval;
 - Diverse yet accurate samples might yield better QA results than the current approach of optimizing for the "most likely" question;
 - The diversified examples are generated using nucleus sampling

On <u>Tesla</u>'s 75th birthday in 1931, Time magazine put him on its cover. The cover caption "All the world's his power house" noted his contribution to electrical power generation. He received congratulatory letters from more than 70 pioneers in science and engineering, including Albert Einstein.

- Who appeared on Time magazine's cover on his 75th birthday?
- ♦ Which famous scientist was in the cover of Time Magazine in 1931?
- Which mad scientist received more than a 70 people congratulating him on his birthday?
- ♦ What famous scientist was also 75?

Figure 1: A passage with an underlined answer span ("Tesla"), and corresponding questions generated by our model. The generated questions exhibit both lexical and factual diversity.

• Diversification

- The diversified examples are generated using nucleus sampling
- Diversity-promoting question generation increase downstream QA performances
- QG metrics that only reward similarity with GT are negatively correlated with diversity

%train	generator	$ B_1 $	R_4	MT	QA F ₁	$ B_1 $	R_4	MT	$QA F_1$
	b=5	39.1	11.9	44.4	<u>82.8</u>	40.6	12.6	45.4	<u>84.3</u>
	p = .1	37.8	10.3	43.4	83.6	39.6	11.2	44.7	84.8
50	p = .5	37.4	10.0	42.9	83.8	39.4	11.1	44.4	84.9
	p = .75	35.4	8.8	40.2	84.3	38.2	10.3	42.8	85.3
	p = .95	<u>31.4</u>	<u>6.3</u>	<u>35.2</u>	84.8	<u>33.6</u>	<u>7.5</u>	<u>37.2</u>	85.7
	b=5	40.3	12.6	45.8	<u>83.6</u>	41.6	13.4	46.7	84.5
	p = .1	38.9	11.0	44.6	83.9	40.6	12.1	46.1	84.9
100	p = .5	38.5	10.7	44.1	84.3	40.3	11.9	45.7	85.0
	p = .75	36.7	9.6	41.7	84.8	38.8	10.8	43.7	85.5
	p = .95	<u>32.5</u>	<u>6.9</u>	<u>36.4</u>	85.3	<u>34.4</u>	<u>7.6</u>	<u>38.3</u>	86.1
	base model						larg	e model	

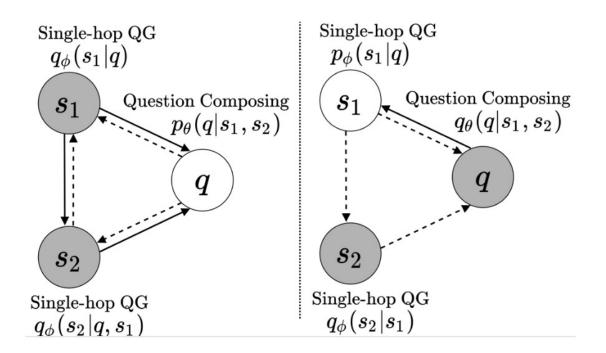
Potentials: Compositional Generalization

- Style transfer for compositional generalization (21ACL Finding)
 - Multi-hop questions requires identifying and aggregating information from multiple documents to derive the question
 - Modeling the reasoning process by decomposing a multi-hop question into several sub-questions

	Paragraph A. Dario Franchitti							
Supportive Evidence	After Franchitti was contracted by the AMG team to compete in touring cars in the DTM and its successor — International Touring Car Championship.							
	Paragraph B. Mercedes-AMG							
	Mercedes-AMG is headquartered in Affalterbach, Germany.							
Groundtruth QA Pair	After he was contracted by the team that is headquartered in Affalterbach, Germany, Dario Franchitti competed in what series? (Answer: DTM)							

Potentials: Compositional Generalization

- Style transfer for compositional generalization (21ACL Finding)
 - Introduced non-parallel single-hop corpuses for joint optimization.
 - Single-hop questions regularize the behavior of sub-question generation;
 - We model single- and multi-hop QG in a unified way via backtranslation.



- 1. The retriever is essential for knowledge-intensive tasks, while the gap between "query" and "documents" is not well addressed';
- 2. Query generation is a promising direction to enhance retriever generalization abilities, while existing attempts mainly focus on question-type generation;
- 3. The task formulation and learning objectives of query generation model is under-explored, where diversification and compositional generalization could have potentials;
- 4. The ultimate goal is to utilize "universal knowledge" for the tasks of interest.