可解释性自然语言处理

Li Qintong 2022/03/10

第一步,收集人工标注的解释性文本

- 作为数据增强改进在预测任务上的效果
- 作为监督数据训练模型对预测结果做解释
- 作为真实标签评估模型的生成的解释

Teach Me to Explain: A Review of Datasets for Explainable Natural Language Processing. 2021.

文本类解释的类型

Instance	Explanation			
<i>Premise:</i> A white race dog wearing the number eight runs on the track. <i>Hypothesis:</i> A white race dog runs around his yard. <i>Label:</i> contradiction	(highlight) <i>Premise:</i> A white race dog wearing the number eight runs on the track. <i>Hypothesis:</i> A white race dog runs around his yard.			
	(free-text) A race track is not usually in someone's yard.			
Question: Who sang the theme song from Russia With Love? Paragraph: The theme song was composed by Li- onel Bart of Oliver! fame and sung by Matt Monro Answer: Matt Monro	Referential equality: "the theme song from russia with			

explanations are implicitly or explicitly designed to answer the question "why is [input] assigned [label]?".

Highlights

- Compactness
- Sufficiency
- Comprehensiveness / selected
- Free-text explanations
 - not constrained to the words or modality of the input instance
 - Expressive / readable
- Structured explanations
 - there may be constraints placed on the explanation writing process, such as the required use of specific inference rules.
 - dataset-specific designs

Dataset	Task	Collection	# Instances
Jansen et al. 56	science exam QA	authors	363
Ling et al. [76]	solving algebraic word problems	auto + crowd	$\sim 101 \text{K}$
Srivastava et al. [115]*	detecting phishing emails	crowd + authors	7 (30-35)
BABBLELABBLE 46*	relation extraction	students + authors	200 ^{‡‡}
E-SNLI 20	natural language inference	crowd	~569K (1 or 3)
LIAR-PLUS 4	verifying claims from text	auto	12,836
COS-E v1.0 [100]	commonsense QA	crowd	8,560
COS-E v1.11 [100]	commonsense QA	crowd	10,962
ECQA 2	commonsense QA	crowd	10,962
SEN-MAKING [124]	commonsense validation	students + authors	2,021
CHANGEMYVIEW [10]	argument persuasiveness	crowd	37,718
WINOWHY [144]	pronoun coreference resolution	crowd	273 (5)
SBIC [111]	social bias inference	crowd	48,923 (1-3)
PUBHEALTH [64]	verifying claims from text	auto	11,832
Wang et al. [125]*	relation extraction	crowd + authors	373
Wang et al. [125]*	sentiment classification	crowd + authors	85
E-δ-NLI [18]	defeasible natural language inference	auto	92,298 (~8)
BDD-X ^{††} [62]	vehicle control for self-driving cars	crowd	~26K
VQA-E ^{††} [75]	visual QA	auto	$\sim 270 \mathrm{K}$
VQA-X ^{††} [94]	visual QA	crowd	28,180 (1 or 3)
ACT-X ^{††} [94]	activity recognition	crowd	18,030 (3)
Ehsan et al. [34] ^{††}	playing arcade games	crowd	2000
VCR ^{††} [143]	visual commonsense reasoning	crowd	$\sim 290 \mathrm{K}$
E-SNLI-VE ^{††} [32]	visual-textual entailment	crowd	11,335 (3) [‡]
ESPRIT ^{††} [101]	reasoning about qualitative physics	crowd	2441 (2)
VLEP ^{††} [72]	future event prediction	auto + crowd	28,726
EMU ^{††} [27]	reasoning about manipulated images	crowd	48K

Table 4: Overview of EXNLP datasets with **free-text explanations** for textual and visual-textual tasks (marked with $\dagger\dagger$ and placed in the lower part). Values in parentheses indicate number of explanations collected per instance (if > 1). ‡ A subset of the original dataset that is annotated. ‡‡ Subset publicly available. * Authors semantically parse the collected explanations.

I. highlight input words and then formulate a free-text explanation from them, to control quality.

2. template-like explanations are discarded because they are deemed uninformative.

Takeaway:

- study how people define and generate explanations for the task before collecting free-text explanations
- 2. explanations are naturally structured, embrace the structure.
- 3. No all-encompassing definition of explanation

U	a <mark>hamburger with friends</mark> , le trying to do?
es: have fun, tast	y, or indigestion burger with friends indicates
a good time.	iourger with menus meleates
	<mark>lrunk people</mark> couldn't n,it was because of his what?
	ls, slurred speech , n
0	e drunk have difficulty speaking.
on: People do what from work?	at during their <mark>time off</mark>
es: take trips, bro	ow shorter, or become hysterical
· · · · · · · · · · · · · · · · · · ·	v do something relaxing, such as hen they don't need to work.
	 what are people have fun, tasty Usually a ham a good time. ion: After getting of understand him es: lower standard or falling down E: People who ar ion: People do what from work? es: take trips, brock E: People usually

Table 1: Examples from our CoS-E dataset.

Explain Yourself! Leveraging Language Models for Commonsense Reasoning. 2019.

Dataset	Task	Explanation Type	Collection	# Instances
WORLDTREE V1 57	science exam QA	explanation graphs	authors	1,680
OPENBOOKQA 81	open-book science QA	1 fact from WORLDTREE	crowd	5,957
Yang et al. [135] ^{††}	action recognition	lists of relations + attributes	crowd	853
WORLDTREE V2 132	science exam QA	explanation graphs	experts	5,100
QED [70]	reading comp. QA	inference rules	authors	8,991
QASC [61]	science exam QA	2-fact chain	authors + crowd	9,980
EQASC 58	science exam QA	2-fact chain	auto + crowd	9,980 (~10)
+ Perturbed	science exam QA	2-fact chain place constrain	ntsute.g.;rphpase)	on the textual
EOBQA 58	open-book science QA	2-fact chain explanations the semi-structured text	auto torgives ca	n write n/a [‡]
Ye et al. [138]*	SQUAD QA	semi-structured text	crowd + authors	164
Ye et al. [138]*	NATURALQUESTIONS QA	semi-structured text	icrowd tsauthors	109
R^4C 53	reading comp. QA	chains of facts reasoning steps w/ highlights	crowd	4,588 (3)
STRATEGYQA 41	implicit reasoning QA		crowd	2,780 (3)
TRIGGERNER	named entity recognition	groups of highlighted tokens	crowd	~7K (2)

Table 5: Overview of ExNLP datasets with **structured explanations** (§5). Values in parentheses indicate number of explanations collected per instance (if > 1). \dagger † Visual-textual dataset. * Authors semantically parse the collected explanations. \ddagger Subset of instances annotated with explanations is not reported. Total # of explanations is 855 for EQASC PERTURBED and 998 for EOBQA.

Dataset-specific forms

- Head-to-head evaluations: 对同一数据集实例在不同条件下生成的 两种解释进行直接比较
- Understand the fine-grained aspects: 收集每个解释的绝对Likert-scale评分

Reframing Human-AI Collaboration for Generating Free-Text Explanations. 2021.

Two dimensions:

- I. Surface-level features: generality grammaticality factuality
- 2. Explanation quality: <u>New information</u> <u>Support the label</u> The information is sufficient

Ensuring explanations are not vacuous and are on-topic.

In an ideal setting, machinegenerated explanation quality should be unambiguous enough to elicit high scores across a group of annotators.

第三步,设计方法生成可解释性文本

- 基于 Prompt + large-scale language model 的方法
- 引入外部知识图谱

Reframing Human-AI Collaboration for Generating Free-Text Explanations. 2021. Event Transition Planning for Open-ended Text Generation. 2022.

Reframing Human-AI Collaboration for Generating Free-Text Explanations

I. In-context learning

We prompt the model with several (question, answer and explanation) triplets, followed by an unexplained question-answer instance for which we expect the model to generate an explanation, without updating any parameters

115 randomly sampled train instances to create our prompts;

Each prompt consists of 8-24 randomly selected examples from this set.

"A dog cannot carry something while asleep".

Let's explain classification decisions. A young boy wearing a tank-top is climbing a tree. question: A boy was showing off for a girl. true, false, or neither? neither why? A boy might climb a tree to show off for a girl, but he also might do it for fun or for other reasons. ### A person on a horse jumps over a broken down airplane. question: A person is outdoors, on a horse. true, false, or neither? true why? Horse riding is an activity almost always done outdoors. Additionally, a plane is a large object and is most likely to be found outdoors. ### There is a red truck behind the horses. question: The horses are becoming suspicious of my apples. true, false, or neither? false why? The presence of a red truck does not imply there are apples, nor does it imply the horses are suspicious.

###

A dog carries an object in the snow. question: A dog is asleep in its dog house. true, false, or neither? false why?

面向开放式文本生成的事件转移规划 Event Transition Planning for Open-ended Text Generation

Figure 1: An illustration of our planning based framework in story completion task. Given story context, we extract corresponding event transition path, and use model <u>EP</u> to develop potential ensuing event transition paths. The planned paths accordingly guide the pathaware text generation model <u>PG</u>.

两步模型

Figure 2: Overall architecture of the proposed coarse-to-fine framework. It consists of two components. (1) **Event Transition Planner**: given a input context, it first extracts corresponding event path and then generates possible ensuing event path. The planner directly inherits the pre-trained parameters from GPT-2; (2) **Event-path-aware Text Generator**: another GPT-2-based generator is applied to generate a natural language sentence by attending to input context and explicit event transition path.

怎么构建一个更好的事件转移模型

Tasks	Methods	BELU-1	BLEU-2	BLEU-4	DIST-1	DIST-2
	GPT-2	23.43	11.50	3.31	1.57	4.18
Dialogue Generation	PLANGENERATION (Ours) w/o Prompt w/o Tuning on Atomic	26.52 23.58 19.82	12.38 11.85 7.90	3.29 3.58 1.81	1.88 1.80 1.16	5.52 5.13 2.54
-	PLANRETRIEVAL	0.75	0.14	0.00	13.05	39.52
Story Completion	GPT-2	15.98	7.19	1.08	5.53	17.44
	PLANGENERATION (Ours) w/o Prompt w/o Tuning on Atomic	19.51 13.64 12.74	9.01 6.14 4.61	1.35 1.12 0.47	5.83 4.71 6.08	17.48 15.77 12.27
	PLANRETRIEVAL	1.28	0.15	0.00	11.88	37.70

Table 2: Experimental results on event transition planning. For detailed description about the compared models, please refer to §4.2.

Figure 3: The log of BLEU-1 scores on story completion with different numbers of sentences as input.

解释性自然语言处理 GO AHEAD

- Contrastive explanations: justify why a prediction was made instead of another.
 [There is no dataset that contains contrastive free-text or structured explanations.]
 - "why...instead of...",
 - Collecting explanations for other labels besides the gold label
- Negative explanations: providing supervision of what is not a correct explanation
 - human JUDGE (low-scoring instances)
 - EDIT phase (instances pre-editing)

