Adapter Parameter Generation for Multi-task & Continual Learning based on LMs

Haoran Yang hryang@se.cuhk.edu.hk

Aug 24, 2021

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks

Rabeeh Karimi Mahabadi* EPFL University, Idiap Research Institute rabeeh.karimimahabadi@epfl.ch Sebastian Ruder DeepMind ruder@google.com

Mostafa Dehghani Google Brain

dehghani@google.com

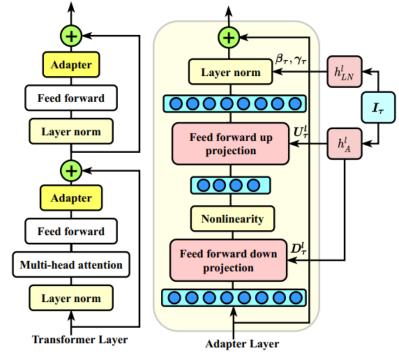
James Henderson Idiap Research Institute james.henderson@idiap.ch

Lifelong Learning of Few-shot Learners across NLP Tasks

Xisen Jin[§] Mohammad Rostami[†] Xiang Ren[§] §University of Southern California, [†]Information Sciences Institute {xisenjin, xiangren}@usc.edu {mrostami}@isi.edu

Background

- Adapter is a module that can be inserted into each layer of LMs.
 - Avoid fine-tuning the entire model (only fine-tuning the adapter while keeping other parameters fixed)
 - 3.6% additional parameters

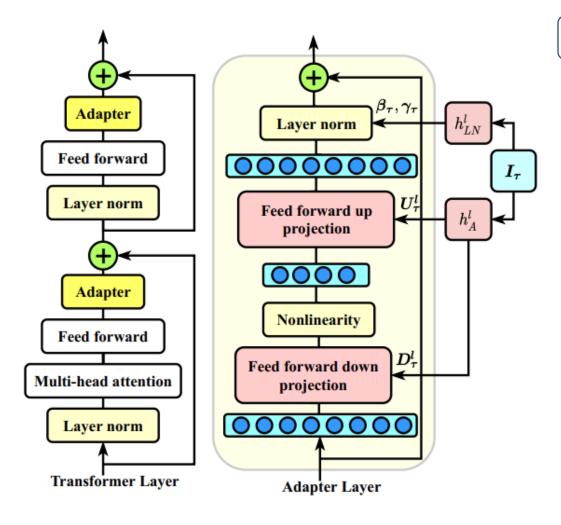


Each transformer layer has two additional adapter layers

Multi-task: Normal FT VS Adapter-based FT

- Normal FT the model across multiple tasks allows sharing information between the different tasks and positive transfer to other related tasks.
- result in models underperforming on high-resource tasks due to constrained capacity
- task interference or negative transfer, where achieving good performance on one task can hinder performance on another
- Adapter-based FT can overcome the above two shortcomings
- Training each task with a separate adapter does not enable sharing information across tasks.
- Solution: design a hypernetwork and it learns to generate task and layerspecific adapter parameters, conditioned on task and layer id embeddings.

Multi-task: HYPERFORMER

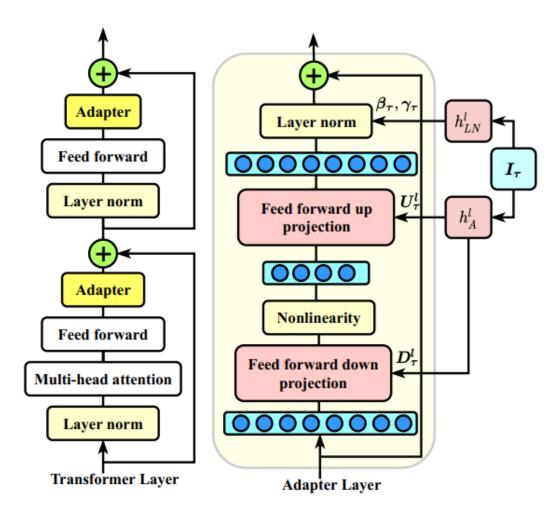


 τ : task id, *l*: layer number, *h*:hypernetwok

$$\begin{split} A_{\tau}^{l}(\boldsymbol{x}) = & LN_{\tau}^{l} \left(\boldsymbol{U}_{\tau}^{l}(\text{GeLU}(\boldsymbol{D}_{\tau}^{l}(\boldsymbol{x}))) \right) + \boldsymbol{x}, \\ & LN_{\tau}^{l}(\boldsymbol{x}_{\tau}^{i}) = \boldsymbol{\gamma}_{\tau}^{l} \odot \frac{\boldsymbol{x}_{\tau}^{i} - \boldsymbol{\mu}_{\tau}}{\boldsymbol{\sigma}_{\tau}} + \boldsymbol{\beta}_{\tau}^{l}, \end{split}$$

$$I_{\tau} = h_{I}(\boldsymbol{z}_{\tau}),$$
$$(\boldsymbol{U}_{\tau}^{l}, \boldsymbol{D}_{\tau}^{l}) := h_{A}^{l}(\boldsymbol{I}_{\tau}) = \left(\boldsymbol{W}^{\boldsymbol{U}^{l}}, \boldsymbol{W}^{\boldsymbol{D}^{l}}\right)\boldsymbol{I}_{\tau}$$
$$(\boldsymbol{\gamma}_{\tau}^{l}, \boldsymbol{\beta}_{\tau}^{l}) := h_{LN}^{l}(\boldsymbol{I}_{\tau}) = \left(\boldsymbol{W}^{\boldsymbol{\gamma}^{l}}, \boldsymbol{W}^{\boldsymbol{\beta}^{l}}\right)\boldsymbol{I}_{\tau},$$

Multi-task: HYPERFORMER++



 τ : task id, l: layer number

A downside of introducing a separate hypernetwork in each layer of the Transformer is that it increases the overall number of parameters.

So how to share the hypernetworks in different layers and different adapters?

$$\mathcal{I} = \{ oldsymbol{l}_i \}_{i=1}^L$$
 $\mathcal{P} = \{ oldsymbol{p}_j \}_{j=1}^2$

 $I_{\tau} = h'_I(z_{\tau}, l_i, p_j)$

Results: main

Model	#Total params	#Trained params / per task	CoLA	SST-2	MRPC	QQP	STS-B	MNLI	QNLI	RTE	Avg
	Single-Task Training										
T5 _{small}	8.0×	100%	46.81	90.47	86.21/90.67	91.02/87.96	89.11/88.70	82.09	90.21	59.42	82.06
Adapters _{SMALL} *	$ 1+8\times0.01$	0.74%	40.12	89.44	85.22/89.29	90.04/86.68	83.93/83.62	81.58	89.11	55.80	79.53
$T5_{BASE}$	8.0×	100%	54.85	92.19	88.18/91.61	91.46/88.61	89.55/89.41	86.49	91.60	67.39	84.67
Adapters _{BASE} *	$1+8 \times 0.01$	0.87%	59.49	93.46	88.18/91.55	90.94/88.01	87.44/87.18	86.38	92.26	68.84	84.88
				Multi-	Task Training						
T5 _{small} ♠	1.0×	12.5%	50.67	91.39	84.73/88.89	89.53/86.31	88.70/88.27	81.04	89.67	59.42	81.69
Adapters [†] _{SMALL}	$1.05 \times$	0.68%	39.87	90.01	88.67/91.81	88.51/84.77	88.15/87.89	79.95	89.60	60.14	80.85
HYPERFORMER _{small}	$1.45 \times$	5.80%	47.64	91.39	90.15/92.96	88.68/85.08	87.49/86.96	81.24	90.39	65.22	82.47
$HyperFormer++_{SMALL}$	1.04×	0.50%	53.96	90.59	84.24/88.81	88.44/84.46	87.73/87.26	80.69	90.39	71.01	82.51
T5 _{BASE} ♠	1.0×	12.5%	54.88	92.54	90.15/93.01	91.13/88.07	88.84/88.53	85.66	92.04	75.36	85.47
Adapters [†] BASE	$1.07 \times$	0.82%	61.53	93.00	90.15/92.91	90.47/87.26	89.86/89.44	86.09	93.17	70.29	85.83
HYPERFORMER _{base}	$1.54 \times$	6.86%	61.32	93.80	90.64/93.33	90.13/87.18	89.55/89.03	86.33	92.79	78.26	86.58
$HYPERFORMER++_{BASE}$	$1.02 \times$	0.29%	63.73	94.03	89.66/92.63	90.28/87.20	90.00/89.66	85.74	93.02	75.36	86.48

- HYPERFORMER++ obtains similar performance as HYPERFORMER, while being more than an order of magnitude parameter efficient.
- Compared to single-task fine-tuning, proposed model improves the performance.
 - substantial improvement on low-resource dataset CoLA and RTE

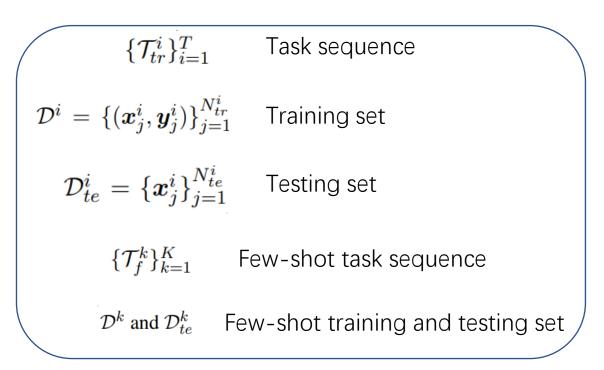
Results: few shot domain transfer

- They assess how well a trained HYPERFORMER can generalize to new tasks.
- New task list: NLI, QA, sentiment analysis datasets IMDB and Yelp Polarity, PAWS
- They use the adapter and the task embedding respectively trained on the most similar GLUE task for initialization, i.e. MNLI for NLI, QNLI for QA, SST-2 for sentiment analysis, and QQP for PAWS. Few-shot fine-tuning the model on each target training data.

Dataset	*Samples	15th St	Adaptositura	Hyper Constraints
		ral Language	Sector March 199	
	4	79.60±3.3	79.54±2.8	82.00±4.9
	16	80.03±2.3	83.25±1.7	86.55±1.4
SciTail	32	81.97 ± 1.3	85.06±1.1	85.85±1.4
Schlan	100	84.04 ± 0.7	88.22±1.3	88.52±0.7
	500	88.07 ± 0.7	91.27 ± 0.8	$91.44{\scriptstyle \pm 0.6}$
	1000	88.77 ± 1.0	$91.75{\scriptstyle \pm 0.8}$	92.34±0.5
	2000	91.01±1.0	92.72±0.5	$93.40{\scriptstyle\pm0.2}$
	4	57.78±10.9	51.11±9.2	60.74±16.66
CD	16	77.04±7.2	74.81±5.4	76.29±4.45
	32	80.0±7.6	74.81±5.9	81.48±6.2
CB	100	85.93±5.4	80.74±7.6	87.41±2.96
	250	85.19±4.7	86.67±5.0	89.63±4.32

Continual Learning

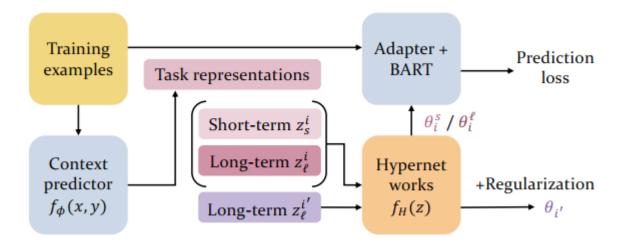
- Enable a single base model to expand its knowledge continually to learn the new future tasks while still remembering previous tasks
- Notations:



Aim to address the following questions:

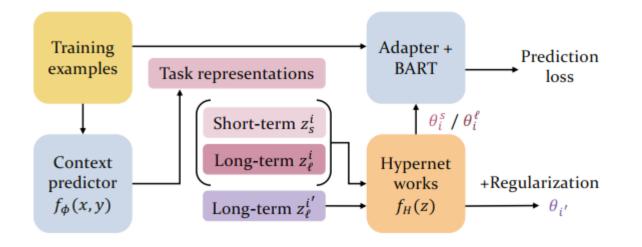
- can continually trained models retain performance effectively on seen tasks
- can models transfer knowledge to learn new tasks better
- can the resulting continually trained models learn new tasks with only a few training examples

Models: Long-Short Term Hypernetwork with Regularization (HNET+Reg)



- 1. Context Prediction: output a task representation vector
 - Long-term representation $z_s^i = \frac{1}{|\mathcal{D}_i|} \sum_{x_i \in \mathcal{D}_i} f_{\phi}(x_i, y_i)$
 - Short-term representation $z_l^i = \frac{1}{N} \sum_{i=i'}^{i'-N+1} f_{\phi}(\boldsymbol{x}_i, \boldsymbol{y}_i)$
 - f_{ϕ} is a frozen BART encoder
- 2. Adapter Generation with Hypernetworks f_H :
 - It generates parameters of adapters for each layers. $f_H(z)$

Models: Long-Short Term Hypernetwork with Regularization (HNET+Reg)



More specifically, before learning a new task \mathcal{T}_i , the hypernetwork generates adapter weights for each seen task $\mathcal{T}_{1..i-1}$, noted as $\theta_{1..i-1}^i$. While updating the hypernetwork on the new task *i*, the model generate adapters for a random seen task from 1..i - 1 with stored low-dimensional long-term task representations, noted as $\theta_{i'}$. It then penalizes the ℓ_2 distance between the adapter weights generated at the current time step and those generated before learning the new task, *i.e.*, $||\theta_{i'} - \theta_{i'}^i||_2^2$.

3. Mitigating Catastrophic Forgetting

- when the hypernetwork tries to learn current task adapter parameters, it may forget how to generate previous tasks adapter parameters.
- The idea is to regularize the change of generated model weights for previous tasks using the stored task representations.
- For example, before learning the 2nd task, f_H firstly generates the parameters θ_1 of the 1st task by inputting the 1st task representation vector, then when learning the 2nd task, a regularization loss is added between θ_1 and current generated parameters θ_1 ,

Experiments setting & Evaluation

- They employ the GLUE tasks as the sequential training tasks in their experiments.
- To evaluate few-shot learning ability, they employ the 17 few-shot learning tasks.
- Evaluation
 - Instant Accuracy: evaluate right after learning each task
 - Final Accuracy: evaluate after learning all tasks

Task	CoLA	SST-2	MRPC	STS-B	QQP	MNLI	QNLI	RTE	WNLI	Average
Continual learning										
BART-Vanilla	0.00	0.00	0.00	0.00	0.00	4.04	49.46	52.71	43.66	20.68
BART-MbPA++	60.40	73.74	61.27	66.47	69.50	45.56	63.31	55.96	39.44	59.52
BART-meta-MbPA	30.87	70.41	68.38	49.53	67.06	32.75	76.50	62.09	43.66	55.69
HNET-Vanilla	0.00	49.54	31.37	49.53	63.18	0.00	63.92	70.76	56.34	42.75
HNET-EWC	0.00	80.16	0.00	0.00	0.00	0.00	51.18	60.65	57.74	27.76
HNET-Reg	30.87	89.90	63.23	82.13	81.04	75.55	75.03	62.09	60.56	68.93
HNET _{\ST} -Reg	60.11	91.28	83.82	81.47	81.25	73.02	70.09	62.45	57.74	73.47
$HNET_{d=4}$ -Reg	78.72	89.68	31.62	49.80	78.98	44.38	57.66	63.54	59.15	61.50
Single-task learning										
HNET-Single	78.52	90.25	85.54	85.00	82.31	75.77	86.40	53.43	56.34	77.06
Adapter-Single	69.13	91.28	77.94	84.20	82.53	75.19	85.50	52.71	56.34	74.98
Majority	69.13	50.92	68.38	50.47	63.18	35.33	50.54	52.71	56.34	55.22

• Measuring Catastrophic Forgetting

Experiments setting & Evaluation

- Measuring Knowledge Transfer
 - Previous tasks help to improve current task performance ?
 - Using instant accuracy.

Task	CoLA	SST-2	MRPC	STS-B	QQP	MNLI	QNLI	RTE	WNLI	Average
BART-Vanilla	77.56	88.07	80.88	84.47	80.54	71.28	83.10	59.21	43.66	74.31
BART-MbPA++	80.15	91.97	80.64	84.73	83.25	75.50	85.56	58.84	56.34	77.48
BART-meta-MbPA	81.69	91.62	82.84	85.53	85.25	75.94	85.25	63.18	56.34	78.63
HNET-Vanilla	79.70	91.51	84.06	86.20	79.55	77.26	87.74	71.48	59.15	79.67
HNET-EWC	79.70	91.74	73.53	83.13	81.51	75.42	87.11	70.76	57.75	77.85
HNET-Reg	79.70	90.94	86.76	85.73	82.43	76.22	86.56	69.68	60.56	79.84
HNET _{\ST} -Reg	78.04	90.82	86.52	86.00	81.95	75.52	87.06	62.45	57.74	78.46
$HNET_{d=4}$ -Reg	79.19	92.43	70.09	83.20	79.13	75.83	86.40	70.40	59.15	74.01

Experiments setting & Evaluation

• Measuring Few-shot Learning

Task	Entity Typing	Text Classification	NL Inference	Sentiment Analysis	Average
Task Num.	2	10	1	4	17
Continual learning					
BART-Vanilla	59.57	54.21	64.35	78.83	61.23
BART-MBPA	60.88	54.39	69.59	85.58	63.39
BART-meta-MbPA	63.26	54.14	71.93	84.80	63.47
HNET-Vanilla	67.40	58.75	78.46	85.83	67.30
HNET-EWC	66.54	58.19	69.04	84.73	66.06
HNET-Reg	66.60	58.78	73.75	87.88	67.43
HNET _{\ST} -Reg	61.44	57.62	68.39	84.73	65.08
Single-task learning					
HNET-Single	64.71	56.70	57.90	71.95	61.30
BART-Adapter	61.76	54.32	58.61	71.87	59.58

Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization

Dongkyu Lee Zhiliang Tian Lanqing Xue Nevin L. Zhang Department of Computer Science and Engineering, The Hong Kong University of Science and Technology {dleear, ztianac, lxueaa, lzhang}@cse.ust.hk

Background

- Text style transfer aims to alter the style (e.g., sentiment) of a sentence while preserving its content.
- A common approach is to map a given sentence to content representation that is free of style, and the content representation is fed to a decoder with a target style.
- How to distill content representation from a sentence?
 - Previous works: remove style tokens (may incur the loss of the content information)
- Proposed methods:
 - implicitly removing the style information of each token with reverse attention
 - Making the style dynamic with respect to the content (conditional layer normalization)

Method

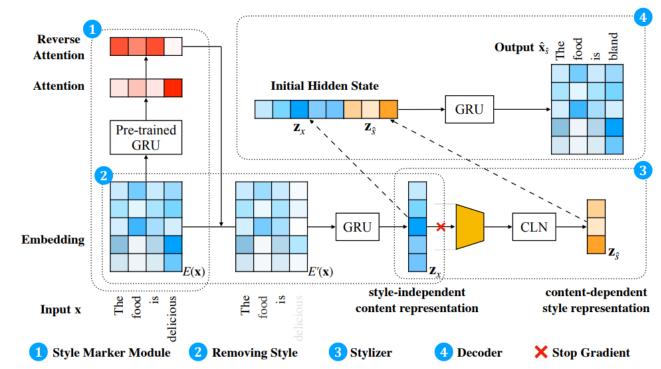
Reverse attention:

Pretrained GRU is a pretrained style classifier with self-attention layer.

Attention assigns the style tokens larger weights.

Reverse Attention = 1 – Attention assigns style tokens smaller weights.

Reverse Attention x Embeddings reduces the influence of style tokens while keeping the content information



Content-Dependent Style:

$$\mathbf{\tilde{z}}_{\mathbf{x}} = \mathbf{W}_{z}\mathbf{z}_{\mathbf{x}} + \mathbf{b}_{z} \qquad \mathbf{z}_{\hat{s}} = CLN(\mathbf{\tilde{z}}_{\mathbf{x}}; \hat{s}) = \gamma^{\hat{s}} \odot N(\mathbf{\tilde{z}}_{\mathbf{x}}) + \beta^{\hat{s}}$$

$$N(\tilde{\mathbf{z}}_{\mathbf{x}}) = \frac{\tilde{\mathbf{z}}_{\mathbf{x}} - \mu}{\sigma}$$

Our model learns separate γ^s (gain) and β^s (bias) parameters for different styles.

Method: Loss function

Self Reconstruction Loss:

$$\mathcal{L}_{self} = -\mathbb{E}_{(\mathbf{x},s)\sim\mathcal{D}}[\log p_D(\mathbf{x}|\mathbf{z}_{\mathbf{x}},\mathbf{z}_s)]$$

Cycle Reconstruction Loss:

$$\mathcal{L}_{cycle} = -\mathbb{E}_{(\mathbf{x},s)\sim\mathcal{D}}[\log p_D(\mathbf{x}|\mathbf{z}_{\hat{\mathbf{x}}_{\hat{s}}},\mathbf{z}_s)]$$

Content Loss:

$$\mathcal{L}_{content} = \mathbb{E}_{(\mathbf{x},s)\sim\mathcal{D}} ||\mathbf{z}_{\mathbf{x}} - \mathbf{z}_{\hat{\mathbf{x}}_{\hat{s}}}||_{2}^{2}$$

Style Transfer Loss:

$$\mathcal{L}_{style} = -\mathbb{E}_{(\mathbf{x},s)\sim\mathcal{D}}[\log p_C(\hat{s}|\hat{\mathbf{x}}_{\hat{s}})]$$

Thanks