Paper Reading

Lingyun Feng
2021-07-08

Local Sequence Transduction (LST)

* In local sequence transduction (LST) an input sequence x1, . . ., Xn needs to
be mapped to an output sequenceys, ..., ym where the x and y sequences
differ only in a few positions, m is close to n, and xi, yjcome from the same

vocabulary 2.

e Applications:
 Grammatical error correction (GEC)
* Sentence fusion/splitting

* The general sequence transduction task is cast as sequence to sequence
(seq2seq) learning and modeled popularly using an attentional encoder-
decoder (ED) model. The ED model auto-regressively produces each token
vt in the output sequence conditioned on all previous tokensyi, . .., yt-1.

® sequence tagging approaches that cast text generation as a
text editing task.

® Why?

* In some text generation tasks, such as the recently introduced
sentence splitting and sentence fusion tasks, output texts highly
overlap with inputs. In this setting, learning a seq2seq model to
generate the output text from scratch seems intuitively wasteful.

* Copy mechanisms allow for choosing between copying source tokens
and generating arbitrary tokens, but although such hybrid models help
with out-of-vocabulary words, they still require large training sets as
they depend on output vocabularies as large as those used by the
standard seq2seq approaches.

® How?

Encode, Tag, Realize: High-Precision
Text Editing

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil Mirylenka, Aliaksei Severyn

Google Research

 LASERTAGGER—a sequence tagging-based model for text
editing.

 Two versions of the tagging model: G]\[;]\[; | -

L,
* LASERTAGGERAR: Td]l‘d ! f\ Q0 — . —®
the tagging model with an autoregressive =) [; Af [Tj
decoder —— =
* LASERTAGGERFF Transtormer | @ S G2 &
the model with feedforward decoder f;:as“ S E .*:‘(_h_ —
E E, E, E

Figure 3: The architecture of LASERTAGGER zR.

Target texts are reconstructed from the inputs using three main edit operations:
keeping a token, deleting it, and adding a phrase before the token.

Tunng was born n 1912 . Turning died 1n 1954 .

|_| o Q& Left: combining a BERT
", Encnde]% Tag | .
1)) encoder with an

Q g .
and he autoregressive transformer
EEEP EKEEP KEEP EEEFP EKEEP DELETE DELETE EEEFP EKEEF EKEEFP KEEP . .
decoder to predict the edit
" [Realize | T operations.
) " {/ The realization step is to
Turing was born in 1912 and he died in 1954 . convert tags into the final

output text after obtaining a

Figure 1: LASERTAGGER applied to sentence fusion. :
stre ’GER applied to sentence fu predicted tag sequence.

Experiments

* Sentence Fusion * Split and Rephrase

* fuses sentences into a single * requires rewriting a long sentence

coherent sentence into two or more coherent short
sentences.

Model Exact SARI

Transformer (Geva et al.. 2019) 51.1 84.5 Model BLEU Exact SARI

SEQ2SEQBERT 336 853 seq2seq (Bothaetal, 2018) 760 146 60.6

LASERTAGGERaR (n0 SWAP) 464 804 SEQ2SEQgERT 67 151 623

LASERTAGGERFr 3522 84.1 LASERTAGGERgF 76.0 14.4 61.3

LASERTAGGERAR 53.8 85.5 LASERTAGGER AR 76.3 15.2 61.7

Table 2: Sentence fusion results on DfWiki. Table 3: Results on the WikiSplit dataset.

Exact score: the percentage of exactly correctly predicted fusions
SARI: computes the average F1 scores of the added, kept, and deleted n-grams.

Experiments

* The impact of training-data size

0'9 — ' ' ' ' 0 6
0.8 - ' L
00.7— 80.5- —
s 0.6- S 4
@ 0.5 - B 4=
o 0.4 - % 0.3
g : -@— LaserTaggerap f,ﬁ - = —@— LaserTaggeraa
0.3 - @ LaserTaggerss 0.2 - @ LaserTaggerss
0.2 - / —#— SeQ25eqgear —#— S€Q25€qperRT
0-%= | J ! 1 ' 0.1- ! 1 ' '
450 4,500 45,000 450,000 4,500,000 100 1,000 10,000 100,000 1,000,000
Number of training examples Number of training examples
(a) Sentence Fusion on DfWiki. (b) Split and Rephrase on WikiSplit.

Figure 5: SARI score as a function of the training-data size for three models. Unless we have tens of thousands of
training examples, the tagging approach clearly outperforms the seq2seq baseline.

LASERTAGGER methods degrade more gracefully when reducing training-data size, and start
to outperform the seq2seq baseline once going below circa 10k examples.

Experiments

* Abstractive Summarization * Grammatical Error Correction
e reduce the length of a text while (GEC)
preserving Its meaning. * identify and fix grammatical errors
in a given input text.

Model BLEU-4 Exact SARI ROUGE-L =— = —
Filippova et al. (2015 26.7 0.0 362 70.3
Clarke and tLJup:m[;{;um 28.5 0.3 411_5 715 Grundkiewicz et al. (2019) 7019 47.99 64.24
Cohn and Lapata (2008) 5.1 0.1 27.4 40.7 SEQ2SEQgert 6.13 1414 691
Rush et al. (2015) 16.2 0.0 356 62.5 EASERTAGGER T oAb 3
SEQ2SEQgeRT 83 Of i l LASERTAGGER AR 4746 2558 40.52
LASERTAGGERFF 33.7 1.5 442 819

LASCRTAGGERAR 15.6 A8 44.85 828

Table 5: Results on grammatical-error correction. Note
that Grundkiewicz et al. (2019) augment the training
Table 4: Results on summarization. dataset of 4,384 examples by 100 million synthetic ex-
amples and 2 million Wikipedia edits.

ROUGE-L: a recall-oriented measure computed as the longest common sub-sequence between a reference
summary and a candidate summary. Fo.5 metric: weights precision twice as much as recall.

Experiments

* Inference time

batch size LASERTAGGERgr LASERTAGGERAR SEQ2SEQRERT

1 13 535 1,773
47 668 8,279
32 149 1,273 27,305

Table 6: Inference time (in ms) across various batch
sizes on GPU (Nvidia Tesla P100) averaged across 100
runs with random inputs.

LASERTAGGERFF is up to 100x faster
at inference time with performance
comparable to the state-of-the-art
seq2seq models.

Furthermore, both LASERTAGGERFF
and LASERTAGGERAR require much
less training data compared to the
seq2seq models.

Summary

* Advantages:

* Compared to the seq2seq models, the proposed approach results in a simpler
sequence-tagging problem with a much smaller output tag vocabulary.

 LASERTAGGER has comparable performance when trained on medium-to-large

datasets, and clearly outperforms a strong seq2seq baseline when the number of
training examples is limited.

 LASERTAGGER speeds up inference by more than two orders of magnitude, making
it more attractive for production applications

* More controllable and interpretable than seqg2seq models due to the small
vocabulary of edit operations.

* Less prone to typical seq2seq model errors, such as hallucination.
* Disadvantages:

e Arbitrary word reordering is not feasible, although limited reordering can be
achieved with deletion and insertion operations.

GECToR - Grammatical Error Correction: Tag, Not Rewrite

Kostiantyn Omelianchuk Vitaliy Atrasevych® Artem Chernodub” Oleksandr Skurzhanskyi®
Grammarly

LaserTagger combines a BERT encoder with an autoregressive Transformer decoder to predict
three main edit operations: keeping a token, deleting a token, and adding a phrase before a

token.

In contrast, in GECToR:
* The sequence tagging model is an encoder made up of pretrained BERT-like transformer, the

decoder is a softmax layer stacked with two linear layers with softmax layers on the top.
* Token-level transformations

e Basic transformations perform the most common token-level edit operations, such as:
keep the current token unchanged (tag SKEEP), delete current token (tag SDELETE),
append new token t1 next to the current token xi (tag SAPPEND t1) or replace the current
token xi with another token t2 (tag SREPLACE t2).

e g-transformations perform task-specific operations such as: change the case of the current
token (CASE tags), merge the current token and the next token into a single one (MERGE
tags) and split the current token into two new tokens (SPLIT tags). Moreover, tags from
NOUN NUMBER and VERB FORM transformations encode grammatical properties for
tokens. Predicting g-transformations instead of regular tokens improves the generalization
of GEC sequence tagging system.

Experiments

N CoNLL-2014 (test) BEA-2019 (test)
GEC system Ens. P R Foo P R Foz
Zhao et al. (2019) 67.7 406 598 - - -
Awasthi et al. (2019) 66.1 430 59.7 - - -
Kiyono et al. (2019) 679 441 613 | 655 594 o642
Zhao et al. (2019) v 741 363 613 - - -
Awasthi et al. (2019) v 683 432 612 - - -
Kiyono et al. (2019) v 724 461 650 | 747 567 70.2
Kantor et al. (2019) v - - - 783 580 73.2
GECToR (BERT) 72,1 420 63.0 | 715 557 67.6
GECToR (RoBERTa) 739 415 640 | 772 551 715
GECToR (XLNet) 775 40.1 653 | 792 539 724
GECToR (RoBERTa + XLNet) v 766 423 660 | 794 572 737
GECToR (BERT + RoBERTa + XL Net) v 782 415 665 | 789 582 73.6

Table 7: Comparison of single models and ensembles. The M? score for CoONLL-2014 (test) and ERRANT for
the BEA-2019 (test) are reported. In ensembles we simply average output probabilities from single models.

* Achieve superior performance by incorporating a pre-trained Transformer
encoder in the GEC sequence tagging system. Encoders from XLNet and
RoBERTa outperform three other cutting-edge Transformer encoders
(ALBERT, BERT, and GPT-2)

Experiments

* |terative sequence tagging approach

Iteration # Sentence’s evolution # corr.
Orig. sent A ten years old boy go school -
[teration 1 A ten-years old boy goes school 2
Iteration 2 A ten-year-old boy goes to school 5
Iteration 3 A ten-year-old boy goes to school. 6

Table 3: Example of iterative correction process where
GEC tagging system is sequentially applied at each it-
eration. Cumulative number of corrections is given for
each iteration. Corrections are in bold.

 Some corrections in a sentence may depend on others, applying GEC sequence tagger only
once may not be enough to fully correct the sentence.

 Use the GEC sequence tagger to tag the now modified sequence, and apply the
corresponding transformations on the new tags, which changes the sentence further. Usually,
the number of corrections decreases with each successive iteration, and most of the
corrections are done during the first two iterations.

Seq2Edits: Sequence Transduction
Using Span-level Edit Operations

Felix Stahlberg and Shankar Kumar
Google Research

Each sequence-to-sequence transduction is represented as a sequence of edit
operations, where each operation either replaces an entire source span with
target tokens or keeps it unchanged.

Motivations :

* The representations are much more compact and easier to learn since local
dependencies (within the span) are easier to capture.

* For some of the tasks it is also more natural to approach the problem on the
span-level: a grammatical error is often fixed with more than one (sub)word,
and span-level edits retain the language modelling aspect within a span.

Source: After many years he still to become a super hero

Target: After many years , he stil f becoming a super hero
= I Source span end
v c1 o s Error tag (1) position (/)
Target: ELF ELF), , (SELF, 5, SELF), | s
P2 f’), (FORM, 8, 'becoming’), (SELF, 12, SELF)< Replacement

()

Figure 1: Representing grammatical error correction as a sequence of span-based edit operations. The
implicit start position for a source span is the end position of the previous edit operation. SELF in-
dicates spans that are copied over from the source sentence (x). The probability of the first two edits
is given by: P(After many years ,|x) = / SELF|x) - P JISELF, x) - | SELF|SELF, 3, x

Rather than generating the target sentence as a series of tokens, the model predicts a sequence
of edit operations that, when applied to the source sentence, yields the target sentence.

Each edit operates on a span in the source sentence and either copies, deletes, or replaces it
with one or more target tokens. Edits are generated auto-regressively from left to right using a
modified Transformer architecture to facilitate learning of long-range dependencies.

Much faster than a full sequence model because its runtime depends on the number of edits
rather than the target sentence length.

More explainable by associating each edit operation with a human-readable tag.

Transformer encoder

'

Transtormier decoder A |— The output of the edit operation model is a
q ‘ sequence of 3-tuples rather than a
Tag prediction sequence of tokens. The probability of the

: n—-1 _n—-1 _n—1 .
P(t,|t] P T o X) output is computed as:

Span end position P(y|x) = P(-*‘?J;'l T |X)
prediction \\
n-1 _n-1
| P(palty, l’; T X)) = H P(tn, pn,mnlt] L P L "_l,x).
ixed vocabulary] n=1
PT e VWY Transformer decoder B (-
\ Replacement token | (Vinyals et al., 2015) For inference, they factorize the conditional
prediction probabilities further as:

n-1

P(ralty, py,ri . %)

n-1 n-1 _n-1
Figure 2: Seq2Edits consists of a Trans- P(tn, pn; '"“ 11) l'l)
: - < n-— n-— -
former (Vaswani et al., 2017) encoder and a =Ptalt; 0717 %)
Transformer decoder that is divided horizontally P(palt], o7 77 x)
into two parts (A and B). The tag and span predictions . "'r:|"1'~1'1~"'1 L x).

are located in the middle of the decoder layer stack
between both parts. A single step of prediction is
shown.

Experiments

* Text normalization for speech
application

e Converting number expressions
such as “123” to their
verbalizations (e.g. “one two three”
or “one hundred twenty three”,
etc.) depending on the context.

System SER|
English Russian
Mansfield et al. (2019)" 2.77 -
Zhang et al. (2019) 1.80 4.20
This work (semiotic tags) 1.36 3.95

Table 5: Sentence error rates on the English and Rus-
sian text normalization test sets of Sproat and Jaitly
(2016). *: best system from Mansfield et al. (2019)
without access to gold semiotic class labels.

* Sentence fusion
* Merging two independent

sentences to a single coherent one.

System Exact? SARIT
Malmi et al. (2019) 53.80 85.45
Mallinson et al. (2020) 61.31 88.78
Rothe et al. (2019) 63.90 89.52

This work (no tags) 61.71 88.73

Table 6: Sentence fusion results on the DiscoFuse

(Geva et al., 2019) test set.

On par with the FELIX tagger on the DiscoFuse dataset

but worse than the BERT2BERT

BERT2BERT’s strategy of making use of target-side pre-
training under a language model objective is

particularly useful for sentence fusion.

Experiments

* Sentence splitting & rephrasing e Text simplification

 Splitting a long sentence into two * Reducing the linguistic complexity
fluent sentences. of text.

— . ; : System SARIT
System Exact] SART] Malmi et al. (2019) 32.31
Botha et al. (2018) 14.6 60.6 SR o o at
Malmi et al. (2019) 152 617 =t sl o
Malmi et al. (2019) - SEQ2SEQueyy 15.1 62.3 AUEE o (AN0) 37.94
This work (no tags) 7.0 63.6 Ma.lhn.xon etal. (2020) 38.13

This work (no tags) 37.16

Table 7: Sentence splitting results (Botha et al., 2018). , o)
Table 8: Text simplification results.

The model is competitive, demonstrating that it can benefit
from even limited quantities of training data. However, it
does not improve the state of the art on this test set.

Experiments

e Grammatical error correction.

* Correct grammatical errors in
written text.

System BEA-dev CoNLL-14 JFLEG

Pt RT Fos 71 Pt Rt FosT GLEUT
Lichtarge et al. (2019) - - - 65.5 37.1 56.8 61.6
Awasthi et al. (2019) - - - 66.1 43.0 59.7 60.3
Zhao et al. (2019) - - - 67.7 406 59.8

Choe et al. (2019) 544 322 47.8 - - -
Grundkiewicz et al. (2019) 56.1 348 50.0 - - -
Kiyono et al. (2019) . . 67.9 44.1 61.3 59.7

~ This work (ERRANT tags) 509 39.1 45.0 630 456 586 62.7

Table 9: Single model results for grammatical error correction.

 The model tends to have a lower precision but higher recall than other systems.
* Achieve the highest GLEU score on the JFLEG test set.

* Grammatical error correction examples from BEA-dev

Source o It 1 will 2 be 3 very 4 cool 5 to ¢ see 7 the 5 las o part ;o mokingjay 11 ! 12
Reference It will be very cool to see the last part of Mokingjay !
Full seq. It will be very cool to see the last mokingjay !
Edit model It will be very cool to see the last part of mokingjay !

~ " NN N SN e

SELF SPELL gprp PREP SELF
Edits (SELF, 8, SELF), (SPELL, 9, ‘last’), (SELF, 10, SELF), (PART, 10, ‘of’), (SELF, 12, SELF)
Source o If | she 2 was 3 n’t 4 awake 5 , ¢ why 7 she g could ¢ n’t ;; remember ;; anything ;> after ;3 that 14 ? 15
Reference If she was n’t awake , why could n’t she remember anything after that ?
Full seq. If she was n’t awake , why she could n’t remember anything after that ?
Edit model If she was n’t awake , why could n’t she remember anything after that ?
SELF w0 SELF

Edits (SELF, 7, SELF), (WO, 10, ‘could n’t she’), (SELF, 15, SELF)
Source o Less ; channels 2 means 3 less 4 choices 5 . ¢
Reference Fewer channels means fewer choices .
Full seq. Less channels means fewer choices .
Edit model Fewer channels means fewer choices .

N o \emmmm—, mmm— o s’ o’

ADJ SELF ADJ SELF

Edits (ADJ, 1, ‘Fewer’), (SELF, 3, SELF), (ADJ, 4, ‘fewer’), (SELF, 6, SELF)
Source 0 On | the 2 one 3 hand 4 travel 5 by ¢ car 7 are g really ¢ much 1o more ;; convenient ;2 as ;3 give 14 the 15

chance 16 to 17 you 15 to 19 be 20 independent 2, . 22
Reference On the one hand , travel by car is really much more convenient , as it gives you the chance to be independent .
Full seq. On the one hand , travel by car is really much more convenient , as it gives you the chance to be independent .
Edit model Ontheonehand , travelbycar is really much more convenient , asgive you the chance

h ~~ TN Nt SN ~ O N St Nt S —

SELF PUNCT SELF VERB:SVA SELF PUNCT SELF PRON SELF
to be independent .
SE:F

Edits (SELF, 4, SELF), (PUNCT, 4, ‘), (SELF, 7, SELF), (VERB: SVA, 8, ‘is’), (SELF, 12, SELF), (PUNCT, 12,

‘"), (SELF, 14, SELF), (PRON, 14, ‘you’), (SELF, 16, SELF), (PRON, 18, DEL), (SELF, 22, SELF)

The second example shows that Seq2Edits is able to handle more complex operations such as word reorderings.
However, the model fails to inflect “give” correctly in the last example, suggesting that one weakness of the edit
model compared to a full sequence model is a weaker target side language model resulting in less fluent output.

Summary

Advantages:

* Competitive results on five different NLP problems, improving the state of the art on text
normalization, sentence splitting, and the JFLEG test set for grammatical error correction.

e 2.0-5.2 times faster than a full sequence model for GEC.
* Predict labels that explain each edit to improve the interpretability for the end-user.
Disadvantages:

 The model uses a tailored architecture that would require some engineering effort to
implement efficiently.

* The output of the model tends to be less fluent than a regular full sequence model. This
is not an issue for localized edit tasks such as text normalization but may be a drawback
for tasks involving substantial rewrites (e.g. GEC for non-native speakers).

Thanks

