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Local Sequence Transduction (LST)

• In local sequence transduction (LST) an input sequence x1, . . . , xn needs to 
be mapped to an output sequence y1, . . . , ym where the x and y sequences 
differ only in a few positions, m is close to n, and xi , yj come from the same 
vocabulary Σ.

• Applications:
• Grammatical error correction (GEC)

• Sentence fusion/splitting

• The general sequence transduction task is cast as sequence to sequence 
(seq2seq) learning and modeled popularly using an attentional encoder-
decoder (ED) model. The ED model auto-regressively produces each token 
yt in the output sequence conditioned on all previous tokens y1, . . . , yt−1.



⚫ sequence tagging approaches that cast text generation as a 
text editing task.

⚫ Why?
• In some text generation tasks, such as the recently introduced 

sentence splitting and sentence fusion tasks, output texts highly 
overlap with inputs. In this setting, learning a seq2seq model to 
generate the output text from scratch seems intuitively wasteful. 

• Copy mechanisms allow for choosing between copying source tokens 
and generating arbitrary tokens, but although such hybrid models help 
with out-of-vocabulary words, they still require large training sets as 
they depend on output vocabularies as large as those used by the 
standard seq2seq approaches.

⚫ How?
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• LASERTAGGER—a sequence tagging-based model for text 
editing.

• Two versions of the tagging model:
• LASERTAGGERAR: 
the tagging model with an autoregressive 
decoder
• LASERTAGGERFF

the model with feedforward decoder 



• Target texts are reconstructed from the inputs using three main edit operations: 
keeping a token, deleting it, and adding a phrase before the token. 

Left: combining a BERT 
encoder with an 
autoregressive transformer 
decoder to predict the edit 
operations. 
The realization step is to 
convert tags into the final 
output text after obtaining a 
predicted tag sequence. 



Experiments

• Sentence Fusion
• fuses sentences into a single 

coherent sentence

• Split and Rephrase
• requires rewriting a long sentence 

into two or more coherent short 
sentences.

Exact score: the percentage of exactly correctly predicted fusions
SARI: computes the average F1 scores of the added, kept, and deleted n-grams.



Experiments

LASERTAGGER methods degrade more gracefully when reducing training-data size, and start 
to outperform the seq2seq baseline once going below circa 10k examples. 

• The impact of training-data size 



Experiments

• Abstractive Summarization
• reduce the length of a text while 

preserving its meaning.

• Grammatical Error Correction 
(GEC)
• identify and fix grammatical errors 

in a given input text.

ROUGE-L: a recall-oriented measure computed as the longest common sub-sequence between a reference 
summary and a candidate summary. F0.5 metric: weights precision twice as much as recall.



Experiments

• Inference time

LASERTAGGERFF is up to 100x faster 
at inference time with performance 
comparable to the state-of-the-art 
seq2seq models. 
Furthermore, both LASERTAGGERFF 

and LASERTAGGERAR require much 
less training data compared to the 
seq2seq models.



Summary

• Advantages:
• Compared to the seq2seq models, the proposed approach results in a simpler 

sequence-tagging problem with a much smaller output tag vocabulary. 
• LASERTAGGER has comparable performance when trained on medium-to-large 

datasets, and clearly outperforms a strong seq2seq baseline when the number of 
training examples is limited.

• LASERTAGGER speeds up inference by more than two orders of magnitude, making 
it more attractive for production applications

• More controllable and interpretable than seq2seq models due to the small 
vocabulary of edit operations.

• Less prone to typical seq2seq model errors, such as hallucination. 

• Disadvantages:
• Arbitrary word reordering is not feasible, although limited reordering can be 

achieved with deletion and insertion operations.





LaserTagger combines a BERT encoder with an autoregressive Transformer decoder to predict 
three main edit operations: keeping a token, deleting a token, and adding a phrase before a 
token.  

In contrast, in GECToR:
• The sequence tagging model is an encoder made up of pretrained BERT-like transformer, the 

decoder is a softmax layer stacked with two linear layers with softmax layers on the top. 
• Token-level transformations 

• Basic transformations perform the most common token-level edit operations, such as: 
keep the current token unchanged (tag $KEEP), delete current token (tag $DELETE), 
append new token t1 next to the current token xi (tag $APPEND t1) or replace the current 
token xi with another token t2 (tag $REPLACE t2). 

• g-transformations perform task-specific operations such as: change the case of the current 
token (CASE tags), merge the current token and the next token into a single one (MERGE 
tags) and split the current token into two new tokens (SPLIT tags). Moreover, tags from 
NOUN NUMBER and VERB FORM transformations encode grammatical  properties for 
tokens. Predicting g-transformations instead of regular tokens improves the generalization 
of GEC sequence tagging system.



Experiments

• Achieve superior performance by incorporating a pre-trained Transformer 
encoder in the GEC sequence tagging system. Encoders from XLNet and 
RoBERTa outperform three other cutting-edge Transformer encoders 
(ALBERT, BERT, and GPT-2)



Experiments

• Iterative sequence tagging approach

• Some corrections in a sentence may depend on others, applying GEC sequence tagger only 
once may not be enough to fully correct the sentence. 

• Use the GEC sequence tagger to tag the now modified sequence, and apply the 
corresponding transformations on the new tags, which changes the sentence further. Usually, 
the number of corrections decreases with each successive iteration, and most of the 
corrections are done during the first two iterations. 
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Each sequence-to-sequence transduction is represented as a sequence of edit 
operations, where each operation either replaces an entire source span with 
target tokens or keeps it unchanged. 

Motivations :

• The representations are much more compact and easier to learn since local 
dependencies (within the span) are easier to capture. 

• For some of the tasks it is also more natural to approach the problem on the 
span-level: a grammatical error is often fixed with more than one (sub)word, 
and span-level edits retain the language modelling aspect within a span.



• Rather than generating the target sentence as a series of tokens, the model predicts a sequence 
of edit operations that, when applied to the source sentence, yields the target sentence. 

• Each edit operates on a span in the source sentence and either copies, deletes, or replaces it 
with one or more target tokens. Edits are generated auto-regressively from left to right using a 
modified Transformer architecture to facilitate learning of long-range dependencies.

• Much faster than a full sequence model because its runtime depends on the number of edits 
rather than the target sentence length. 

• More explainable by associating each edit operation with a human-readable tag.



The output of the edit operation model is a 
sequence of 3-tuples rather than a 
sequence of tokens. The probability of the 
output is computed as:

For inference, they factorize the conditional 
probabilities further as:



Experiments

• Text normalization for speech 
application
• Converting number expressions 

such as “123” to their 
verbalizations (e.g. “one two three” 
or “one hundred twenty three”, 
etc.) depending on the context.

• Sentence fusion
• Merging two independent 

sentences to a single coherent one.

On par with the FELIX tagger on the DiscoFuse dataset 
but worse than the BERT2BERT
BERT2BERT’s strategy of making use of target-side pre-
training under a language model objective  is 
particularly useful for sentence fusion.



Experiments

• Sentence splitting & rephrasing
• Splitting a long sentence into two 

fluent sentences.

• Text simplification 
• Reducing the linguistic complexity 

of text.

The model is competitive, demonstrating that it can benefit 
from even limited quantities of training data. However, it 
does not improve the state of the art on this test set.



Experiments

• Grammatical error correction.
• Correct grammatical errors in 

written text.

• The model tends to have a lower precision but higher recall than other systems.
• Achieve the highest GLEU score on the JFLEG test set.



The second example shows that Seq2Edits is able to handle more complex operations such as word reorderings. 
However, the model fails to inflect “give” correctly in the last example, suggesting that one weakness of the edit 
model compared to a full  sequence model is a weaker target side language model resulting in less fluent output.

• Grammatical error correction examples from BEA-dev



Summary

Advantages:

• Competitive results on five different NLP problems, improving the state of the art on text 
normalization, sentence splitting, and the JFLEG test set for grammatical error correction. 

• 2.0-5.2 times faster than a full sequence model for GEC.

• Predict labels that explain each edit to improve the interpretability for the end-user. 

Disadvantages:

• The model uses a tailored architecture that would require some engineering effort to 
implement efficiently. 

• The output of the model tends to be less fluent than a regular full sequence model. This 
is not an issue for localized edit tasks such as text normalization but may be a drawback 
for tasks involving substantial rewrites (e.g. GEC for non-native speakers). 
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