Paper Reading

Tian Lan 2021/7/1

Pretrained LM for Dialog Response Selection

- Task Formulation of the Dialog Response Selection
- **BERT-VFT** An Effective Domain Adaptive Post-Training Method for BERT in Response Selection (Interspeech 2020)
- **SA-BERT** Speaker-Aware BERT for Multi-Turn Response Selection in Retrieval-Based Chatbots (CIKM 2020)
- UMS-BERT Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection (AAAI 2021)
- **BERT-SL** Learning an Effective Context-Response Matching Model with Self-Supervised Tasks for Retrieval-based Dialogues (AAAI 2021)
- HCL Dialogue Response Selection with Hierarchical Curriculum Learning (ACL 2021)
- **BERT-FP** Fine-grained Post-training for Improving Retrieval-based Dialogue Systems (NAACL 2021)

Task Formulation

- Input: multi-turn conversation context c, and one candidate r
- **Output**: the matching degree s = f(c,r), where f is the model f is the BERT or the RNN model
- Benchmarks: Ubuntu-v1, Douban, E-Commerce 1 million samples for training (pos:neg = 1:1), 1000 sessions for testing (pos:neg=1:9)
- Evaluation Metric: Information retrieval matric (recall)
 - R₂@1, R₁₀@1, R₁₀@2, R₁₀@5, MRR, MAP

BERT-VFT

An Effective Domain Adaptive Post-Training Method for BERT in Response Selection

Taesun Whang^{1*} Dongyub Lee² Chanhee Lee³ Kisu Yang³ Dongsuk Oh³ Heuiseok Lim³

BERT-VFT

- The first work to utilize the BERT for dialog response selection task, and achieve the SOTA performance
- Use **post-train** to improve the performance of BERT further

BERT-VFT experiment

- The results on Ubuntu-v1 corpus prove the effectiveness of the **BERT** model for this task
- The post-train (**BERT-VFT**) brings very huge improvement

Model	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$
DualEncoder _{rnn}	0.403	0.547	0.819
DualEncoder _{cnn}	0.549	0.684	0.896
DualEncoder _{1stm}	0.638	0.784	0.949
DualEncoder _{bilstm}	0.630	0.780	0.944
MultiView	0.662	0.801	0.951
SMN	0.726	0.847	0.961
AK-DE-biGRU	0.747	0.868	0.972
DUA	0.752	0.868	0.962
DAM	0.767	0.874	0.969
MRFN	0.786	0.886	0.976
IoI	0.796	0.894	0.974
MSN	<u>0.800</u>	<u>0.899</u>	<u>0.978</u>
BERT _{base}	0.817	0.904	0.977
BERT-DPT	0.851	0.924	0.984
BERT-VFT	0.855	0.928	0.985
BERT-VFT(DA)	0.858	0.931	0.985

Table 2: Model comparison on Ubuntu Corpus V1.

BERT-VFT conclusion

- Advantage:
 - The first work to introduce the BERT model into dialog response selection task
 - Test the effectiveness of the post-train for this downstream task
- Disadvantage:
 - Only test on Ubuntu-v1 corpus, missing the experiments on other benchmarks, such as Douban, E-commerce
 - Missing the experiments and analyse of the dual-encoder(BERT) model

SA-BERT

Speaker-Aware BERT for Multi-Turn Response Selection in Retrieval-Based Chatbots

Jia-Chen Gu¹, Tianda Li², Quan Liu^{1,3}, Zhen-Hua Ling¹, Zhiming Su³, Si Wei³, Xiaodan Zhu² ¹National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China, Hefei, China ²ECE & Ingenuity Labs, Queen's University, Kingston, Canada ³State Key Laboratory of Cognitive Intelligence, iFLYTEK Research, Hefei, China gujc@mail.ustc.edu.cn,tianda.li/xiaodan.zhu@queensu.ca,quanliu/zhling@ustc.edu.cn,zmsu/siwei@iflytek.com

SA-BERT

- Leverage the **speaker information** into the multi-turn dialog conversation
- Rich experiments on 5 datasets
- Post-train is used

SA-BERT experiment

		Ubuntu (Corpus V1		Ubuntu Corpus V2					
	R ₂ @1	R ₁₀ @1	R ₁₀ @2	R ₁₀ @5	R ₂ @1	R ₁₀ @1	R ₁₀ @2	R ₁₀ @5		
SMN [15]	0.926	0.726	0.847	0.961	-	-	-	-		
DUA [18]	-	0.752	0.868	0.962	-	-	-	-		
DAM [20]	0.938	0.767	0.874	0.969	-	-	-	-		
MRFN [12]	0.945	0.786	0.886	0.976	- 0	- 6	-	-		
IMN [4]	0.946	0.794	0.889	0.974	0.945	0.771	0.886	0.979		
IoI [13]	0.947	0.796	0.894	0.974	-	-	-	-		
MSN [17]	-	0.800	0.899	0.978	-	-	-	-		
BERT	0.950	0.808	0.897	0.975	0.950	0.781	0.890	0.980		
SA-BERT	0.965	0.855	0.928	0.983	0.963	0.830	0.919	0.985		

Table 2: Evaluation results of SA-BERT and previous methods on the Ubuntu Dialogue Corpus V1 and V2.

		Dou	ban Con	versation	Corpus		E-commerce Corpus			
	MAP	MRR	P @1	R ₁₀ @1	R ₁₀ @2	R ₁₀ @5	R ₁₀ @1	R ₁₀ @2	R ₁₀ @5	
SMN [15]	0.529	0.569	0.397	0.233	0.396	0.724	0.453	0.654	0.886	
DUA [18]	0.551	0.599	0.421	0.243	0.421	0.780	0.501	0.700	0.921	
DAM [20]	0.550	0.601	0.427	0.254	0.410	0.757	-	-	-	
MRFN [12]	0.571	0.617	0.448	0.276	0.435	0.783	-	-	-	
IMN [4]	0.570	0.615	0.433	0.262	0.452	0.789	0.621	0.797	0.964	
IoI [13]	0.573	0.621	0.444	0.269	0.451	0.786	0.563	0.768	0.950	
MSN [17]	0.587	0.632	0.470	0.295	0.452	0.788	0.606	0.770	0.937	
BERT	0.591	0.633	0.454	0.280	0.470	0.828	0.610	0.814	0.973	
SA-BERT	0.619	0.659	0.496	0.313	0.481	0.847	0.704	0.879	0.985	

SA-BERT conclusion

- Advantage
 - It is reasonable to use the speaker information in the multi-turn conversation
- Disadvantage
 - Missing the **ablation study of the post-train** procedure. It is unclear whether the improvement is made by post-train or the speaker information in their experiment.

UMS-BERT

Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies For Multi-turn Response Selection

> Taesun Whang^{1*} Dongyub Lee^{2*} Dongsuk Oh³ Chanhee Lee³ Kijong Han⁴ Dong-hun Lee⁴ Saebyeok Lee^{1,3†}

> > ¹Wisenut Inc. ²Kakao Corp. ³Korea University ⁴Kakao Enterprise Corp.

UMS-BERT

• The response selection task alone is insufficient. In this work, three well designed **auxiliary tasks** are used.

• Insertion

$$\begin{split} \mathbf{X}_{\mathrm{INS}} &= [[\mathrm{CLS}]\,[\mathrm{INS}]_1\,u_1[\mathrm{INS}]_2\,u_2\ldots u_{t-1}\\ & [\mathrm{INS}]_t\,u_{t+1}\ldots u_k\,[\mathrm{INS}]_k\,[\mathrm{SEP}]\,u_t\,[\mathrm{SEP}]] \end{split}$$

• Deletion

$$\begin{split} \mathbf{X}_{\mathrm{DEL}} &= [[\mathrm{CLS}] \, [\mathrm{DEL}]_1 \, u_1 \, [\mathrm{DEL}]_2 \, u_2 \dots [\mathrm{DEL}]_t \\ & u^{rand} \, [\mathrm{DEL}]_{t+1} \, u_t \dots [\mathrm{DEL}]_{k+1} \, u_k \, [\mathrm{SEP}]] \end{split}$$

• Search

 $\mathbf{X}_{\text{SRCH}} = [[\text{CLS}] [\text{SRCH}]_1 u_1' [\text{SRCH}]_2 u_2' \dots \\ [\text{SRCH}]_t u_t' \dots u_{k-1}' [\text{SEP}] u_k [\text{SEP}]]$

UMS-BERT experiment

Models		Ubuntu				D	ouban			E-commerce		
wodels	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$	MAP	MRR	P@1	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$
CNN (Kadlec, Schmid, and Kleindienst 2015)	0.549	0.684	0.896	0.417	0.440	0.226	0.121	0.252	0.647	0.328	0.515	0.792
LSTM (Kadlec, Schmid, and Kleindienst 2015)	0.638	0.784	0.949	0.485	0.537	0.320	0.187	0.343	0.720	0.365	0.536	0.828
BiLSTM (Kadlec, Schmid, and Kleindienst 2015)	0.630	0.780	0.944	0.479	0.514	0.313	0.184	0.330	0.716	0.365	0.536	0.825
MV-LSTM (Wan et al. 2016)	0.653	0.804	0.946	0.498	0.538	0.348	0.202	0.351	0.710	0.412	0.591	0.857
Match-LSTM(Wang and Jiang 2016)	0.653	0.799	0.944	0.500	0.537	0.345	0.202	0.348	0.720	0.410	0.590	0.858
Multi-View (Zhou et al. 2016)	0.662	0.801	0.951	0.505	0.543	0.342	0.202	0.350	0.729	0.421	0.601	0.861
DL2R (Yan, Song, and Wu 2016)	0.626	0.783	0.944	0.488	0.527	0.330	0.193	0.342	0.705	0.399	0.571	0.842
SMN (Wu et al. 2017)	0.726	0.847	0.961	0.529	0.569	0.397	0.233	0.396	0.724	0.453	0.654	0.886
DUA (Zhang et al. 2018)	0.752	0.868	0.962	0.551	0.599	0.421	0.243	0.421	0.780	0.501	0.700	0.921
DAM (Zhou et al. 2018)	0.767	0.874	0.969	0.550	0.601	0.427	0.254	0.410	0.757	0.526	0.727	0.933
IoI (Tao et al. 2019b)	0.796	0.894	0.974	0.573	0.621	0.444	0.269	0.451	0.786	0.563	0.768	0.950
MSN (Yuan et al. 2019)	0.800	0.899	0.978	0.587	0.632	0.470	0.295	0.452	0.788	0.606	0.770	0.937
BERT (Gu et al. 2020)	0.808	0.897	0.975	0.591	0.633	0.454	0.280	0.470	0.828	0.610	0.814	0.973
BERT-SS-DA (Lu et al. 2020)	0.813	0.901	0.977	0.602	0.643	0.458	0.280	0.491	0.843	0.648	0.843	0.980
SA-BERT (Gu et al. 2020)	0.855	0.928	0.983	0.619	0.659	0.496	0.313	0.481	0.847	0.704	0.879	0.985
BERT (ours)	0.820	0.906	0.978	0.597	0.634	0.448	0.279	0.489	0.823	0.641	0.824	0.973
ELECTRA	0.826	0.908	0.978	0.602	0.642	0.465	0.287	0.483	0.839	0.609	0.804	0.965
UMS _{BERT}	0.843	0.920	0.982	0.597	0.639	0.466	0.285	0.471	0.829	0.674	0.861	0.980
UMS _{ELECTRA}	0.854	<u>0.929</u>	<u>0.984</u>	0.608	<u>0.650</u>	<u>0.472</u>	0.291	0.488	0.845	0.648	0.831	0.974
BERT+	0.862	0.935	0.987	0.609	0.645	0.463	0.290	0.505	0.838	0.725	0.890	0.984
ELECTRA+	0.861	0.932	0.985	0.612	0.655	0.480	0.301	0.499	0.836	0.673	0.835	0.974
UMS _{BERT+}	0.875 [†]	0.942 [†]	0.988 [†]	0.625	0.664	0.499	0.318	0.482	0.858	0.762	0.905	0.986
UMS _{ELECTRA+}	0.875	0.941	0.988	0.623	0.663	0.492	0.307	0.501	0.851	0.707	0.853	0.974

UMS-BERT experiment

	Auxiliary Tasks	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$	MRR
1	None	0.826	0.908	0.978	0.890
2	INS	0.836	0.917	0.980	0.897
3	DEL	0.848	0.924	0.983	0.905
4	SRCH	0.834	0.915	0.981	0.896
5	INS + DEL	0.853	0.927	0.984	0.909
6	INS + SRCH	0.841	0.920	0.982	0.901
7	DEL + SRCH	0.852	0.927	0.983	0.908
8	INS + DEL + SRCH	0.854	0.929	0.984	0.910

- Each strategy contributes to the performance
- Contributions order: DEL > INS \approx SRCH

Ammanh	Model	Orig	inal	Adver	sarial
Approach	Model	$R_{10}@1$	MRR	$R_{10}@1$	MRR
	BERT	0.820	0.887	0.199	0.561
Baselines	BERT+	0.862	0.915	0.203	0.573
	ELECTRA	0.826	0.890	0.304	0.614
	ELECTRA+	0.861	0.914	0.329	0.636
	Avg	0.842	0.902	0.259	0.596
	BERT	0.843	0.902	0.310	0.622
	BERT+	0.875	0.923	0.363	0.656
UMS	ELECTRA	0.854	0.910	0.397	0.668
	ELECTRA+	0.875	0.922	0.437	0.692
	Avg	0.862	0.914	0.377	0.660

- Adversarial candidates are used to examine the robustness.
- Adversarial candidate are randomly sampled from the multi-turn conversation context.
- UMS is more robust than BERT

UMS-BERT conclusion

- Advantage
 - Auxiliary tasks is straightforward and reasonable, which is very similar to the BERT pre-training procedure (NSP, MLM, SOP, …)
- Disadvantage
 - After reading the codes of their codes, I find that they create the negative samples for each strategy, and **the size of the training dataset are 3x larger than the previous training protocol**. More experiments should be added to prove the improvements are brought from the strategy other than the more negative samples.

BERT-SL

Learning an Effective Context-Response Matching Model with Self-Supervised Tasks for Retrieval-based Dialogues

Ruijian Xu^{*1} Chongyang Tao^{*2} Daxin Jiang² Xueliang Zhao³ Dongyan Zhao¹ Rui Yan¹

BERT-SL

- Very similar to UMS-BERT.
- Four auxiliary tasks are used

BERT-SL experiment

	Metrics		Ubuntu	Corpus		E-commerce Corpus			
Ν	Aodels	R ₂ @1	R ₁₀ @1	R ₁₀ @2	R ₁₀ @5	R ₁₀ @1	R ₁₀ @2	R ₁₀ @5	
	DualLSTM (Lowe et al., 2015)	0.901	0.638	0.784	0.949	0.365	0.536	0.828	
	Multi-View (Zhou et al., 2016)	0.908	0.662	0.801	0.951	0.421	0.601	0.861	
	SMN (Wu et al., 2017)	0.926	0.726	0.847	0.961	0.453	0.654	0.886	
	DUA (Zhang et al., 2018)	-	0.752	0.868	0.962	0.501	0.700	0.921	
Non-PLM-based	DAM (Zhou et al., 2018)	0.938	0.767	0.874	0.969	0.526	0.727	0.933	
Models	MRFN (Tao et al., 2019b)	0.945	0.786	0.886	0.976	-	-	-	
	IMN (Gu et al., 2019)	0.946	0.794	0.889	0.974	0.621	0.797	0.964	
	ESIM (Chen & Wang, 2019)	0.950	0.796	0.874	0.975	0.570	0.767	0.948	
	IoI (Tao et al., 2019a)	0.947	0.796	0.894	0.974	0.563	0.768	0.950	
	MSN (Yuan et al., 2019)	-	0.800	0.899	0.978	0.606	0.770	0.937	
	BERT (Whang et al., 2020)	0.954	0.817	0.904	0.977	0.610	0.814	0.973	
	SA-BERT (Gu et al., 2020)	0.965	0.855	0.928	0.983	0.704	0.879	0.985	
	BERT-VFT (Whang et al., 2020)	-	0.855	0.928	0.985	-	-	-	
	BERT-VFT (Ours)	0.969	0.867	0.939	0.987	0.717	0.884	0.986	
PLM-based	BERT-SL	0.975*	0.884*	0.946*	0.990*	0.776*	0.919*	0.991	
Models	BERT-SL w/o. NSP	0.973	0.879	0.944	0.989	0.760	0.914	0.988	
	BERT-SL w/o. UR	0.974	0.881	0.945	0.990	0.763	0.916	0.991	
	BERT-SL w/o. ID	0.972	0.877	0.942	0.989	0.755	0.911	0.987	
	BERT-SL w/o. CD	0.973	0.880	0.945	0.989	0.742	0.897	0.986	

- BERT-SL achieves the SOTA performance
- Ablation study prove the effectiveness of each strategy

BERT-SL conclusion

Same as the UMS-BERT

HCL

Dialogue Response Selection with Hierarchical Curriculum Learning

Yixuan Su^{♠,*} Deng Cai[♡] Qingyu Zhou[◊] Zibo Lin[◊] Simon Baker[♠] Yunbo Cao[◊] Shuming Shi[◊] Nigel Collier[♠] Yan Wang[◊] [♠]Language Technology Lab, University of Cambridge [♡]The Chinese University of Hong Kong [◊]Tencent Inc.

HCL

- Leverage the curriculum learning to train the model in easy-todifficult schema
- Hierarchical curriculum learning are proposed
 - Corpus-level:

The ranking model (fast dual encoder ranking model) are used to measure the difficulty of each (c,r) pair. Easy pairs are first used for training, then the hard pairs.

• Instance-level:

The ranking model are used to measure the **difficulty** of negative samples for the context *c*. Easy negative samples are first used for training, then the hard pairs.

HCL experiment

Model			D	ouban				Ub	untu		E-Commerce		
	MAP	MRR	P@1	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$	$R_2@1$	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$
RNN	0.390	0.422	0.208	0.118	0.223	0.589	0.768	0.403	0.547	0.819	0.325	0.463	0.775
CNN	0.417	0.440	0.226	0.121	0.252	0.647	0.848	0.549	0.684	0.896	0.328	0.515	0.792
LSTM	0.485	0.527	0.320	0.187	0.343	0.720	0.901	0.638	0.784	0.949	0.365	0.536	0.828
BiLSTM	0.479	0.514	0.313	0.184	0.330	0.716	0.895	0.630	0.780	0.944	0.355	0.525	0.825
MV-LSTM	0.498	0.538	0.348	0.202	0.351	0.710	0.906	0.653	0.804	0.946	0.412	0.591	0.857
Match-LSTM	0.500	0.537	0.345	0.202	0.348	0.720	0.904	0.653	0.799	0.944	0.410	0.590	0.858
DL2R	0.488	0.527	0.330	0.193	0.342	0.705	0.899	0.626	0.783	0.944	0.399	0.571	0.842
Multi-View	0.505	0.543	0.342	0.202	0.350	0.729	0.908	0.662	0.801	0.951	0.421	0.601	0.861
DUA	0.551	0.599	0.421	0.243	0.421	0.780	-	0.752	0.868	0.962	0.501	0.700	0.921
DAM	0.550	0.601	0.427	0.254	0.410	0.757	0.938	0.767	0.874	0.969	0.526	0.727	0.933
MRFN	0.571	0.617	0.448	0.276	0.435	0.783	0.945	0.786	0.886	0.976	-	-	-
IOI	0.573	0.621	0.444	0.269	0.451	0.786	0.947	0.796	0.894	0.974	0.563	0.768	0.950
SMN	0.529	0.569	0.397	0.233	0.396	0.724	0.926	0.726	0.847	0.961	0.453	0.654	0.886
MSN	0.587	0.632	0.470	0.295	0.452	0.788	-	0.800	0.899	0.978	0.606	0.770	0.937
SA-BERT	0.619	0.659	0.496	0.313	0.481	0.847	0.965	0.855	0.928	0.983	0.704	0.879	0.985
SMN+HCL	0.575	0.620	0.446	0.281	0.452	0.807	0.947	0.777	0.885	0.981	0.507	0.723	0.935
MSN+HCL	0.620	0.668	0.507	0.321	0.508	0.841	0.969	0.826	0.924	0.989	0.642	0.814	0.968
SA-BERT+HCL	0.639	0.681	0.514	0.330	0.531	0.858	0.977	0.867	0.940	0.992	0.721	0.896	0.993

HCL experiment

Advantage

- Rich experiments:
 - Traditional evaluation protocol
 - Different learning strategy
 - Different learning architecture (RNN, Transformers, BERT)
 - Ablation study
- Disadvantage
 - Hard to implement
 - Lots of hyper-parameters during training

BERT-FP

Fine-grained Post-training for Improving Retrieval-based Dialogue Systems

Janghoon Han^{1,3}, Taesuk Hong¹, Byoungjae Kim¹, Youngjoong Ko², Jungyun Seo¹ ¹Department of Computer Science and Engineering, Sogang University ²Department of Computer Science and Engineering, Sungkyunkwan University ³LG AI Research janghoon.han@lgresearch.ai

{hongtaesuk,wiz3021,seojy}@sogang.ac.kr yjko@skku.edu

BERT-FP

- During the post-train, they convert dialog response selection task from binary-classification (NSP) to three-classification
 - Positive sample
 - Random negative sample
 - Topic related hard negative sample (utterance within the same session)

BERT-FP experiment

Models		Ubuntu				Do	ouban			E	E-commerce		
widdels	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$	MAP	MRR	P@1	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$	
TF-IDF (Lowe et al., 2015)	0.410	0.545	0.708	0.331	0.359	0.180	0.096	0.172	0.405	0.159	0.256	0.477	
RNN (Lowe et al., 2015)	0.403	0.547	0.819	0.390	0.422	0.208	0.118	0.223	0.589	0.325	0.463	0.775	
CNN (Kadlec et al., 2015)	0.549	0.684	0.896	0.417	0.440	0.226	0.121	0.252	0.647	0.328	0.515	0.792	
LSTM (Kadlec et al., 2015)	0.638	0.784	0.949	0.485	0.537	0.320	0.187	0.343	0.720	0.365	0.536	0.828	
SMN (Wu et al., 2017)	0.726	0.847	0.961	0.529	0.569	0.397	0.233	0.396	0.724	0.453	0.654	0.886	
DUA (Zhang et al., 2018)	0.752	0.868	0.962	0.551	0.599	0.421	0.243	0.421	0.780	0.501	0.700	0.921	
DAM(Zhou et al., 2018)	0.767	0.874	0.969	0.550	0.601	0.427	0.254	0.410	0.757	0.526	0.727	0.933	
IOI (Tao et al., 2019)	0.796	0.894	0.974	0.573	0.621	0.444	0.269	0.451	0.786	0.563	0.768	0.950	
ESIM (Chen and Wang, 2019)	0.796	0.894	0.975	-	-	-	-	-	-	0.570	0.767	0.948	
MSN (Yuan et al., 2019)	0.800	0.899	0.978	0.587	0.632	0.470	0.295	0.452	0.788	0.606	0.770	0.937	
BERT (Gu et al., 2020)	0.808	0.897	0.975	0.591	0.633	0.454	0.280	0.470	0.828	0.610	0.814	0.973	
RoBERTa-SS-DA (Lu et al., 2020)	0.826	0.909	0.978	0.602	0.646	0.460	0.280	0.495	0.847	0.627	0.835	0.980	
BERT-DPT (Whang et al., 2020)	0.851	0.924	0.984	-	-	-	-	-	-	-	-	-	
BERT-VFT (Whang et al., 2020)	0.855	0.928	0.985	-	-	-	-	-	-	-	-	-	
SA-BERT (Gu et al., 2020)	0.855	0.928	0.983	0.619	0.659	0.496	0.313	0.481	0.847	0.704	0.879	0.985	
UMS _{BERT+} (Whang et al., 2021)	0.875	0.942	0.988	0.625	0.664	0.499	0.318	0.482	0.858	0.762	0.905	0.986	
BERT-SL (Xu et al., 2021)	0.884	0.946	0.990	-	-	-	-	-	-	0.776	0.919	0.991	
BERT-FP	0.911	0.962	0.994	0.644	0.680	0.512	0.324	0.542	0.870	0.870	0.956	0.993	
(diff. %p)	(+2.7)	(+1.6)	(+0.4)	(+1.9)	(+1.6)	(+1.3)	(+0.6)	(+4.7)	(+1.2)	(+9.4)	(+3.7)	(+0.2)	

BERT-FP achieve the SOTA performance, and significantly outperforms the previous works

The influence of the context length shows that the long conversation context may brings the noise for decision

BERT-FP conclusion

- Advantage
 - Their work demonstrates that post-train is still very important for this task
 - The analysis of the context length is interesting, which is rarely mentioned in previous works
- Disadvantage
 - There are still lots of training samples for post-train procedure, and the ablation study of this factor is missing.

Thanks !