Paper Reading

Haoran Yang 2021/06/24

Content

- Self-supervised Regularization for text classification (TACL 2021)
 - Strategies of fine-tuning a pretrained LM on downstream tasks to achieve better results.
- Continual Learning for text classification with Information Disentanglement Based Regularization (NAACL 2021)

Self-supervised Regularization for Text Classification

Meng Zhou* Shanghai Jiao Tong University Northeastern University

Zechen Li* zhoumeng9904@sjtu.edu.cn li.zec@northeastern.edu

Pengtao Xie[†] UC San Diego plxie@eng.ucsd.edu

Background

General fine-tuning

The standard pre-training-fine-tuning setting (adapted from (Ruder et al., 2019))

Pretrained LMs are still poorly equipped to deal with data that is substantially different from the one they have been pre-trained on. Adaptive fine-tuning is a way to bridge such a shift in distribution by fine-tuning the model on data that is closer to the distribution of the target data.

Adaptive fine-tuning

Domain-adaptive pretraining (DAPT):

continue pretraining LM on a large corpus of unlabeled domain-specific text

Task-adaptive pretraining (TAPT):

pretraining on the task dataset itself

Don't Stop Pretraining: Adapt Language Models to Domains and Tasks ACL 2020

Background

Behavioural fine-tuning

we can teach a model capabilities useful for doing well on the target task by fine-tuning it on relevant tasks.

> For example, if we plan to fine-tune SST2 (Stanford Sentiment Treebank v2), we can firstly fine-tune a LM on IMDB dataset. (Both IMDB and SST2 are sentiment classification dataset and composed of movie reviews.)

Problem of the above three fine-tuning schemes

In many real-world text classification problems, texts available for training are oftentimes limited, models tend to overfit to training data and perform less well on test data.

- add data-dependent regularization losses
 - Losses are designed based on self-supervised learning so no human-labeled data is required.
 - supervised classification task and an unsupervised SSL task are performed simultaneously.

- self-supervised losses used
 - Masked Token Prediction
 - Sentence Augmentation Type Prediction
 - synonym replacement
 - synonym random insertion
 - random swap
 - random deletion

Experiments

Domain	Dataset	Label Type	Train	Dev	Test	Classes
BIOMED	CHEMPROT RCT	relation classification abstract sent. roles	4169 180040	2427 30212	3469 30135	13 5
CS	ACL-ARC	citation intent	1688	114	139	6
	SciERC	relation classification	3219	455	974	7
NEWS	HyperPartisan	partisanship	515	65	65	2
	AGNews	topic	115000	5000	7600	4
REVIEWS	Helpfulness	review helpfulness	115251	5000	25000	2
	IMDB	review sentiment	20000	5000	25000	2

Dataset	RoBERTa	DAPT	ТАРТ	SSL-Reg	TAPT+SSL-Reg	DAPT+SSL-Reg
СнемРкот RCT	$81.9_{1.0}$ $87.2_{0.1}$	$84.2_{0.2}$ $87.6_{0.1}$	82.6 _{0.4} 87.7 _{0.1}	$\begin{array}{c} 83.1_{0.5} \\ 87.4_{0.1} \end{array}$	83.5 _{0.1} 87.7 _{0.1}	84.4 _{0.3} 87.7 _{0.1}
ACL-ARC SciERC	$63.0_{5.8}$ 77.3 _{1.9}	$75.4_{2.5} \\ 80.8_{1.5}$	$67.4_{1.8}$ $79.3_{1.5}$	$\begin{array}{c} 69.3_{4.9} \\ 81.4_{0.8} \end{array}$	$\frac{68.1_{2.0}}{80.4_{0.6}}$	75.7 _{1.4} 82.3 _{0.8}
HyperPartisan AGNews	86.6 _{0.9} 93.9 _{0.2}	$\frac{88.2_{5.9}}{93.9_{0.2}}$	90.4 _{5.2} 94.5 _{0.1}	$92.3_{1.4} \\ 94.2_{0.1}$	93.2 _{1.8} 94.4 _{0.1}	90.7 $_{3.2}$ 94.0 $_{0.1}$
Helpfulness IMDB	$65.1_{3.4}$ $95.0_{0.2}$	$66.5_{1.4}$ $95.4_{0.1}$	$68.5_{1.9}$ $95.5_{0.1}$	$\begin{array}{c} 69.4_{0.2} \\ 95.7_{0.1} \end{array}$	71.0 _{1.0} 96.1 _{0.1}	$\frac{68.3_{1.4}}{95.4_{0.1}}$

Unregularized RoBERTa: directly fine-tune pretrained RoBERTa on target dataset.

Task adaptive pretraining (TAPT): given the pretrained RoBERTa, it is further pretrained on the target dataset.

Domain adaptive pretraining (DAPT): given the pretrained RoBERTa, it is further pretrained on a large-size corpus whose domain is similar to the target dataset.

• we can observe:

- Model with SSL-Reg can generally achieve better performance.
- Model with SSL-Reg has an obvious improvement only on SCIERC and HYPERPARTISAN and HLEPFULNESS.
- It is questionable whether the auxiliary losses can prevent overfitting. Because in low-resource data, their model only has a small improvement.

Continual Learning for Text Classification with Information Disentanglement Based Regularization

Yufan Huang, Yanzhe Zhang^{*1}, Jiaao Chen, Xuezhi Wang², Diyi Yang Georgia Institute of Technology, ¹Zhejiang University, ²Google {yhuang704, jiaaochen, dyang888}@gatech.edu ¹z_yanzhe@zju.edu.cn, ²xuezhiw@google.com

Continual Learning

- Continual learning (CL) aims to enable information systems to learn from a data sequence across time.
 - Class incremental learning: firstly learn to classify birds and dogs, then learn to classify airplanes and cats.
 - Task incremental learning: firstly learn to **book flight** and then learn to **book hotels**, then learn to **reserve restaurants**.
 - Continually update the knowledge base during conversation, much more difficult
 - ...
- Why need continual learning?
 - Most of the time, we do not want to train a separate model when a new dataset comes.
 - Multi-task training may be a solution, but need to train the model from the scratch.
 - ... more human-like

Figure 1: In Continual Learning, the model is trained one dataset at the time. In this instance, the model is first trained on data from the hotel domain D_{Hotel} then on the Taxi D_{Taxi} and so on. The parameter of the model is updated sequentially based on the loss function L.

Challenges in Continual Learning

- Not forget what it has learned from previous tasks.
 - Need the model to perform well on previous tasks
 - Overcome catastrophic forgetting
- Forward the knowledge learned in the past to help learn current task. (forward transfer)
- Transfer the knowledge backward to improve the performance of previous tasks. (backward transfer)

Problem Formulation

Given a sequence of text classification tasks $\{T_1, T_2, ..., T_n\}$, corresponding dataset $\{S_1, S_2, ..., S_n\}$, we aim to learn a model f_{θ} . θ is a set of parameters shared by all tasks.

$$R(f_{\theta}) = \sum_{i=1}^{n} \mathbb{E}_{(x^{i}, y^{i}) \sim T_{i}} \mathcal{L}(f_{\theta}(x^{i}), y^{i})$$

- Disentangle text hidden spaces into representations that are generic to all tasks and representations specific to each individual task
 - For task-generic information: next sentence prediction loss
 - For task-specific information: task identifier prediction loss
- **Regularization** is a constraint added to model output, hidden space and parameters to prevent parameters from changing too much while learning new tasks.
- **Replay:** a memory buffer is first adopted to store seen examples from previous tasks and then the stored data is replayed with the training set for the current task.

Figure 1: Our proposed model architecture. We disentangle the hidden representation into a task generic space and a task specific space via different induction biases. When training on new tasks, different spaces are regularized separately. Also, a small portion of previous data is stored and replayed.

Task-Generic space: Next sentence prediction

predictor f_{nsp} on the generic feature extractor G(.)

$$\mathcal{L}_{nsp} = \mathbb{E}_{x \in S_t \cup \mathcal{M}} (\mathcal{L}(f_{nsp}(G(B(x)), 0) + \mathcal{L}(f_{nsp}(G(B(\tilde{x})), 1)))$$

extractor *G* needs to learn the context dependencies between two segments, which is beneficial to understand every example and generic to any individual task.

Task-specific space: Task ID prediction

i.e., distinguish which task an example belongs to.

$$\mathcal{L}_{task} = \mathbb{E}_{(x,z)\in S_t\cup\mathcal{M}}\mathcal{L}(f_{task}(S(B(x)), z))$$

where z is the corresponding task id for x.

Class Prediction: combing generic and specific features

$$\mathcal{L}_{cls} = \mathbb{E}_{(x,y) \in S_t \cup \mathcal{M}} \mathcal{L}(f_{cls}(g \circ s), y))$$

Here y is the corresponding class label for x, $f_{cls}(.)$ is the class predictor. \circ denotes the concatenation of the two representations.

- Memory selection rule After a new dataset (task) is trained, need to update the memory to store some examples of current task.
 - those stored examples should be as diverse and representative as possible.
 - using K-means to cluster $\gamma |S_t|$ clusters and only select the example closest to each cluster's centroid.

• Regularization

$$\mathcal{L}_{reg}^{g} = \mathbb{E}_{x \in S_t \cup \mathcal{M}_t} \| G^{t-1}(B^{t-1}(x)) - G(B(x)) \|_2$$

$$\mathcal{L}_{reg}^{s} = \mathbb{E}_{x \in S_t \cup \mathcal{M}_t} \| S^{t-1}(B^{t-1}(x)) - S(B(x)) \|_2$$

• Overall Objective

$$\mathcal{L} = \mathcal{L}_{cls} + \mathcal{L}_{nsp} + \mathcal{L}_{task} \\ + \lambda^g \mathcal{L}_{reg}^g + \lambda^s \mathcal{L}_{reg}^s$$

Experiments and Results

Dataset	Dataset Class		Train	Test	
AGNews	4	News	8000	7600	
Yelp	5	Sentiment	10000	7600	
Amazon	5	Sentiment	10000	7600	
DBPedia	14	Wikipedia	28000	7600	
Yahoo	10	Q&A	20000	7600	

AGNews	(news classification)
Yelp	(sentiment analysis)
DBPedia	(Wikipedia article classification)
Amazon	(sentiment analysis)
Yahoo	(Q&A classification)

Order	Task Sequence
1	ag → yelp → yahoo
2	yelp → yahoo → ag
3	yahoo → ag → yelp
4	ag → yelp → amazon → yahoo → dbpedia
5	yelp > yahoo > amazon > dbpedia > ag
6	dbpedia -> yahoo -> ag -> amazon -> yelp
7	yelp → ag → dbpedia → amazon → yahoo

Table 2: Seven random different task sequences used for experiments. The first 6 are used in Setting (Sampled). The last 4 are used in Setting (Full). **Metric:** evaluate models after training on all tasks and report their average accuracies on all test sets as the metric.

Experiments and Results

Length-3 Task Sequences			Length-5 Task Sequences				
1	2	3	Average	4	5	6	Average
25.79	36.56	41.01	34.45	32.37	32.22	26.44	30.34
69.32	70.25	71.31	70.29	68.25	70.52	70.24	69.67
71.50	70.88	72.93	71.77	72.28	73.03	72.92	72.74
71.80	72.72	73.08	72.53	72.63	73.72	73.23	73.19
74.16	74.16	74.16	74.16	75.09	75.09	75.09	75.09
	1 25.79 69.32 71.50 71.80	1 2 25.79 36.56 69.32 70.25 71.50 70.88 71.80 72.72	1 2 3 25.79 36.56 41.01 69.32 70.25 71.31 71.50 70.88 72.93 71.80 72.72 73.08	123Average25.7936.5641.0134.4569.3270.2571.3170.2971.5070.8872.9371.77 71.8072.7273.0872.53	123Average425.7936.5641.0134.4532.3769.3270.2571.3170.2968.2571.5070.8872.9371.7772.28 71.8072.7273.0872.5372.63	123Average4525.7936.5641.0134.4532.3732.2269.3270.2571.3170.2968.2570.5271.5070.8872.9371.7772.2873.03 71.8072.7273.0872.5372.6373.72	123Average45625.7936.5641.0134.4532.3732.2226.4469.3270.2571.3170.2968.2570.5270.2471.5070.8872.9371.7772.2873.0372.92 71.8072.7273.0872.5372.6373.7273.23

Figure 2: t-SNE visualization of task generic hidden space and task specific hidden space of IDBR.

```
buffer = Memory()
model = Model(
    n_tasks=task_num,
    n_class=total_classes,
    hidden_size=args.hidden_size).to(args.device)
```

Thanks!