Pre-Trained Checkpoints for Warm-Starting of Generation Models

Haoyu Song

Sep 24th 2020

A Recent Study On This Topic

Leveraging Pre-trained Checkpoints for Sequence Generation Tasks

Sascha Rothe Google Research rothe@google.com

Shashi Narayan Google Research shashinarayan@google.com Aliaksei Severyn Google Research severyn@google.com

Transactions of the Association for Computational Linguistics Volume 8, 2020 p.264-280

Preliminaries

- 1. Autoregressive LM VS Autoencoding LM
- 2. The differences in Pretraining and Finetuning between GPT, BERT

Preliminaries — Autoregressive LM

$$max_{\theta} \log_{\theta}(x) = \sum_{1}^{T} \log \frac{\exp((h_{\theta}(x_{1:t-1}))^{T} e(x_{t}))}{\sum_{x'} \exp((h_{\theta}(x_{1:t-1}))^{T} e(x'))}$$

- Pros: classical language model, time-tested
- Cons: unable to model the context window
- **Examples:** ELMO, GPT 1.0/2.0/3.0

Preliminaries — Autoencoding LM

$$max_{\theta} \log_{\theta}(\bar{x}|\hat{x}) = \sum_{1}^{T} mask_{t} \log \frac{\exp((h_{\theta}(\hat{x}_{t}))^{\mathrm{T}}e(x_{t}))}{\sum_{x'} \exp((h_{\theta}(\hat{x}_{t}))^{\mathrm{T}}e(x'))}$$

- **Pros:** context sensitive bidirectional representation
- Cons: unable to model the context window
- **Examples:** BERT and BERT Variants

A Road Map for Pretrained Models

1. GPT Training

- GPT is a transformer **decoder** in training
 - Word vector of n words in the sentence is added with positional encoding
 - Then input into transformer to output the next word in n+1 position
 - Masked self-attention

Improving Language Understanding by Generative Pre-Training, 2018

1. GPT Finetuning

• GPT for NLU needs task-specific modifications

Classification	Start	Text	Extract	→ Transformer → Linear
Entailment	Start	Premise	Delim	Hypothesis Extract - Transformer - Linear
	Start	Text 1	Delim	Text 2 Extract + Transformer
Similarity	0.001	10/11 2	2.5	
	Start	Text 2	Delim	Text 1 Extract Transformer
	Start	Context	Delim	Answer 1 Extract Transformer Linear
Multiple Choice	Start	Context	Delim	Answer 2 Extract - Transformer Linear
			_	
	Start	Context	Delim	Answer N Extract

Improving Language Understanding by Generative Pre-Training, 2018

2. BERT Training

- BERT is a transformer **encoder** in training
 - MLM + NSP
 - Trained to predict the masked word and next sentence
 - self-attention → embedding → probability

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018

2. BERT Finetuning

• BERT has unified architecture for all NLU tasks

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018

3. RoBERTa Pretraining

- RoBERTa improves the pretraining methods of BERT
 - Dynamic Masking
 - Full-Sentences without NSP
 - Large Mini-Batches
 - Byte-Level BPE

RoBERTa: A Robustly Optimized BERT Pretraining Approach, 2019

4. MASS

- MASS aims to improve BERT on generation tasks
- "Directly applying a BERT like pre-training method on these natural language generation tasks is not feasible, since BERT is designed for language understanding."

MASS: Masked Sequence to Sequence Pre-training for Language Generation, 2019

4. MASS

- MASS aims to improve BERT on generation tasks
- "Directly applying a BERT like pre-training method on these natural language generation tasks is not feasible, since BERT is designed for language understanding."

MASS: Masked Sequence to Sequence Pre-training for Language Generation, 2019

• Can pre-trained checkpoints, like **BERT**, **RoBERTa**, be leveraged for **sequence generation models** ?

A Question

- Can pre-trained checkpoints, like **BERT**, **RoBERTa**, be leveraged for **sequence generation models** ?
 - They are famous for their performance on NLU tasks, not validated on NLG
 SST, MNLI, SQuAD, MRPC ···
 - MLM is different from generation process
 - Encoder-only, rather than encoder-decoder

Go Back to Today's Paper

Leveraging Pre-trained Checkpoints for Sequence Generation Tasks

Sascha Rothe Google Research rothe@google.com

Shashi Narayan Google Research shashinarayan@google.com Aliaksei Severyn Google Research severyn@google.com

Transactions of the Association for Computational Linguistics Volume 8, 2020 p.264-280

Background

- Unsupervised pre-training models has revolutionized NLP
- Released checkpoints pushed the SOTA and saving computing time
- The focus has been mainly on the NLU tasks

BERT, RoBERTa

• This paper demonstrate the efficacy of pre-trained checkpoints for Sequence Generation

Basic Architecture

- A Seq2Seq architecture with encoder and decoder both composed of Transformer layers
- Encoder: Inherit the BERT Transformer layer implementations
- **Decoder:** Identical to the BERT implementation with two adjustments
 - Self-attention mechanism is masked to look only at the left context
 - Add an encoder-decoder attention mechanism

Basic Hyperparameters

- Most models use base checkpoint
 - 12 layers, hidden size of 768, and 12 attention heads
 - Fine-tuned on the target task using Adam with a learning rate of 0.05

Model Variants

- 1. **RND2RND**: A Transformer encoder-decoder architecture with all weights initialized randomly
- 2. **BERT2RND**: A BERT-initialized encoder paired with a randomly initialized decoder. Encoder and decoder share the embedding matrix initialized from a checkpoint.
- 3. RND2BERT: ···
- 4. **BERT2BERT**: A BERT-initialized encoder paired with a BERT-initialized decoder.
- 5. BERTSHARE: Like BERT2BERT, but the parameters between encoder and decoder are shared.
- 6. **ROBERTASHARE**: Same as BERTSHARE, from RoBERTa checkpoint.
- 7. **GPT**: A decoder-only architecture with a public GPT-2 checkpoint.

Model Variants

- 8. RND2GPT : ····
- **9. BERT2GPT**: A BERT-compatible encoder paired with a GPT-2-compatible decoder. BERT vocabulary for the input and the GPT-2 vocabulary for the output.
- 10. ROBERTA2GPT: ····

	total	embed.	init.	random
RND2RND	221M	23M	0	221M
bert2rnd	221M	23M	109M	112M
rnd2bert	221M	23M	109M	26M
BERT2BERT	221M	23M	195M	26M
BERTSHARE	136M	23M	109M	26M
ROBERTASHARE	152M	39M	125M	26M
GPT	125M	39M	125M	0
rnd2gpt	238M	39M	125M	114 M
BERT2GPT	260M	62M	234M	26M
roberta2gpt	276M	78M	250M	26M

Experiment 1: Sentence Fusion

• Sentence Fusion is the problem of combining multiple sentences into a single coherent sentence.

DiscoFuse	10	1%		
	Exact	SARI	SARI	SARI
(Geva et al., 2019)	51.1	84.5	-	_
Initialized with the	base chec		12 layers)
roberta2gpt	65.6	89.9	87.1	80.3
ROBERTASHARE	65.3	89.7	86.9	81.2
BERT2BERT	63.9	89.3	86.1	81.2
bert2rnd	63.9	89.3	86.1	80.3
BERTSHARE	63.9	89.2	86.0	80.8
BERT2GPT	61.5	88.4	84.1	70.2
GPT	60.4	88.0	82.9	74.5
rnd2bert	60.0	87.6	82.1	72.8
rnd2rnd	58.3	86.9	81.5	69.3
rnd2gpt	57.6	86.5	81.4	70.6
Initialized with the	large che	ckpoint ((24 layers	s)
robertaShare	66.6	90.3	87.7	81.5
BERTSHARE	65.3	89.9	86.6	81.4

Previous SOTA: vanilla transformer with only 7 layers

Training was done for 300k steps with a global batch size of 256.

* **SARI** is a lexical similarity metric which compares the model' s output to multiple references and the input in order to assess the model' s ability to add, delete and keep an n-gram.

Experiment 2: Split and Rephrase

 The reverse task of sentence fusion, which requires rewriting a long sentence into two or more coherent short sentences

Exact	SARI	BLEU	
14.3	61.5	76.4	
ase checl	kpoint (1	2 layers)	
16.3	63.5	77.2	
16.1	63.4	77.1	
15.6	63.2	77.0	
15.1	63.2	76.8	
15.9	63.1	76.9	
14.6	62.4	76.5	
15.2	61.8	76.5	
14.6	61.7	76.3	
14.2	61.3	76.2	
14.2	61.1	75.8	
rge chec	kpoint (2	4 layers)	
16.4	63.8	77.4	
16.6	63.7	77.3	
	Exact 14.3 ase check 16.3 16.1 15.6 15.1 15.9 14.6 15.2 14.6 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2	Exact SARI 14.3 61.5 ase checkpoint (12) 16.3 63.5 16.1 63.4 15.6 63.2 15.1 63.2 15.9 63.1 14.6 61.7 14.2 61.3 14.2 61.1 rge checkpoint (2) 16.4 63.8 16.6	ExactSARIBLEU14.361.576.4ase checkpoint (12 layers)16.363.577.216.163.477.115.663.277.015.163.276.815.963.176.914.662.476.515.261.876.514.661.776.314.261.376.214.261.175.8rge checkpoint (24 layers)16.463.777.3

Previous SOTA: a bi-directional LSTM with a copy mechanism

Training was done for 300k steps with a global batch size of 256.

* **Exact** is the exact match accuracy

Experiment 3: Machine Translation

- WMT 2014 English-German task, using newstest2014 and newstest2016 evaluation sets
- input and output lengths to 128 tokens
- batch size of 256 and train for 30 epochs
- beam size of 4
- sentence length penalty is set to $\alpha = 0.6$

Experiment 3: Machine Translation

	newstes	t2014	newstest2016		
	En→De	De→En	En→De	De→En	
(Vaswani et al., 2017)	27.3	_	_	_	
Transformer (ours)	28.1	31.4	33.5	37.9	
KERMIT (Chan et al., 2019)	28.7	31.4	_	_	
(Shaw et al., 2018)	29.2	_	_	_	
(Edunov et al., 2018)*	35.0 (33.8)	_	—	_ ·	

Initialized with public checkpoints (12 layers) and vocabulary

	•	1	•	
Transformer (ours)	23.7	26.6	31.6	35.8
rnd2rnd	26.0	29.1	32.4	36.7
BERT2RND	30.1	32.7	34.4	39.6
RND2BERT	27.2	30.4	33.2	37.5
BERT2BERT	30.1	32.7	34.6	39.3
BERTSHARE	29.6	32.6	34.4	39.6
GPT	16.4	21.5	22.4	27.7
RND2GPT	19.6	23.2	24.2	28.5
BERT2GPT	23.2	31.4	28.1	37.0

Initialized with a custom BERT checkpoint (12 layers) and vocabulary

BERT2RND 30.6 33.5 35.1 40	BERTSHARE	30.5	33.0	35.5	40.1	
	BERT2RND	30.6	33.5 33.6	35.1 35.5	40.2	

augment the training set with a massive amount of back-translated sentence pairs

RoBERTa checkpoint is available for English only. So it was excluded in this experiment.

Initialized with a custom BERT checkpoint (24 layers) and vocabulary										
BERT2RND	31.7	34.2	35.6	41.1						
BERTSHARE	30.5	33.8	35.4	40.9						

Experiment 3: Machine Translation

								_
Method	Setting	en - fr	fr - en	en - de	de - en	en - ro	ro - en	
Artetxe et al. (2017)	2-layer RNN	15.13	15.56	6.89	10.16	-	-	-
Lample et al. (2017)	3-layer RNN	15.05	14.31	9.75	13.33	-	-	
Yang et al. (2018)	4-layer Transformer	16.97	15.58	10.86	14.62	-	-	
Lample et al. (2018)	4-layer Transformer	25.14	24.18	17.16	21.00	21.18	19.44	
XLM (Lample & Conneau, 2019)	6-layer Transformer	33.40	33.30	27.00	34.30	33.30	31.80	
MASS	6-layer Transformer	37.50	34.90	28.30	35.20	35.20	33.10	
Initialized	l with public checkpoin	ts (12 layer	s) and voc	abulary				•
Transform	mer (ours)	23.7	26.6	31.6	35.8			
RND2RN	D	26.0	29.1	32.4	36.7	A comparable resul		
BERT2R	ND	30.1	32.7	34.4	39.6			
RND2BE	RT	27.2	30.4	33.2	37.5	hatwaan I		1ASS and
BERT2BI	ERT	30.1	32.7	34.6	39.3			· · · ·
BERTSH	ARE	29.6	32.6	34.4	39.6	thi	s paper	is on the
GPT		16.4	21.5	22.4	27.7	BL	EU of ne	ewstest2016
RND2GP	Т	19.6	23.2	24.2	28.5	۵n	-da & d	la_an
BERT2GI	PT	23.2	31.4	28.1	37.0	CII		
Initialized	l with a custom BERT o	checkpoint	(12 layers)	and vocab	oulary			
BERT2R	ND	30.6	33.5	35.1	40.2			
BERTSH	ARE	30.5	33.6	35.5	40.1			
Initialized	l with a custom BERT o	checkpoint	(24 layers)	and vocab	oulary			
BERT2R	ND	31.7	34.2	35.6	41.1			
BERTSH	ARE	30.5	33.8	35.4	40.9			
				-				

Experiment 4: Abstractive Summarization

		Gigaword	t	(CNN/Dailyma	il		BBC XSum					
	R-1	R-2	R-L	R-1	R-2	R-L	R-1	R-2	R-L	_			
Lead	_	_	_	39.60	17.70	36.20	16.30	1.61	11.95	-			
PtGen	-	_	_	39.53	17.28	36.38	29.70	9.21	23.24	Mon Pro trained Mo			
ConvS2S	35.88	17.48	33.29	_	_	_	31.89	11.54	25.75		e-ua		ouers
MMN	-	_	_	_	_	_	32.00	12.10	26.00				
Bottom-Up	_	_	_	41.22	18.68	38.34	-	-	-				
MASS	38.73	19.71	35.96	_	_	_	_	_	_				
TransLM	_	_	_	39.65	17.74	36.85	_	_	_	← Pre-tra	ined	Wodels	
UniLM	-	-	_	43.47	20.30	40.63	-	-	-				
Initialized with the	base ch	eckpoint	(12 layer	rs)						-			
rnd2rnd	36.94	18.71	34.45	35.77	14.00	32.96	30.90	10.23	24.24				
bert2rnd	37.71	19.26	35.26	38.74	17.76	35.95	38.42	15.83	30.80				
RND2BERT	37.01	18.91	34.51	36.65	15.55	33.97	32.44	11.52	25.65				
BERT2BERT	38.01	19.68	35.58	39.02	17.84	36.29	37.53	15.24	30.05				
BERTSHARE	38.13	19.81	35.62	39.09	18.10	36.33	38.52	16.12	31.13				
ROBERTASHARE	38.21	19.70	35.44	40.10	18.95	37.39	39.87	17.50	32.37		Length	Repetitions	Quality
GPT	36.04	18.44	33.67	37.26	15.83	34.47	22.21	4.89	16.69	rnd2rnd	20.90	29.76	-0.103
RND2GPT	36.21	18.39	33.83	32.08	8.81	29.03	28.48	8.77	22.30	RND2GPT	21.49	16.28	-0.303
BERT2GPT	36.77	18.23	34.24	25.20	4.96	22.99	27.79	8.37	21.91	ROBERTASHARE	20.71 21.70	27.03	0.153
ROBERTA2GPT	37.94	19.21	35.42	36.35	14.72	33.79	19.91	5.20	15.88	GOLD	24.61	4.66	0.347
Initialized with the	large ch	eckpoin	t (24 laye	ers)						- Table 7: Qualitative	and hums	n evaluations	of BBC ex
BERTSHARE	38.35	19.80	35.66	39.83	17.69	37.01	38.93	16.35	31.52	treme summaries. T	he lowes	t numbers for	repetition
ROBERTASHARE	38.62	19.78	35.94	40.31	18.91	37.62	41.45	18.79	33.90	and the highest numl	pers for q	uality are bold	d faced. Se

Some Ablation Studies

- Combining BERT and GPT-2 into a single model did not work and often underperformed than a randomly initialized baseline.
- **GPT-2 checkpoint performed relatively poorly.** Against the intuition that GPT-2 initialized decoders will be strong natural language generators.
- Initializing only Layers (excluding word embedding): Both GPT and BERT are way behind the fully initialized setup.
- Initializing only Embeddings: almost no improvement over the fully randomly initialized model
- Initializing a Subset of Layers: results from best layer is still outperformed by the base BERT

Discussion

• This paper shows the way to leverage publicly available pre-trained checkpoints for warmstarting sequence generation models

Some Open Questions:

- Do pre-trained models need to be modified for generation tasks?
- Should future works follow the private BART or just use the publicly available checkpoints?

Reference

- 1. Leveraging Pre-trained Checkpoints for Sequence Generation Tasks
- 2. RoBERTa: A Robustly Optimized BERT Pretraining Approach
- 3. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- 4. Improving Language Understanding by Generative Pre-Training
- 5. MASS: Masked Sequence to Sequence Pre-training for Language Generation
- 6. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension

END Q&A