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(ICLR 2020)

« SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language
Models through Principled Regularized Optimization (ACL 2020)
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Language Understanding (arxiv 2004.14543)

 ELECTRA: Pre-training Text Encoders as Discriminators Rather Than
Generators (ICLR 2020)
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Introduction

« Adversarial training is a method for creating robust neural networks.
During adversarial training, mini-batches of training samples are
contaminated with adversarial perturbations (alterations that are small and
yet cause misclassification), and then used to update network parameters until
the resulting model learns to resist such attacks.

* In CV(Computer Vision), adversarial training can improve the robustness,
but it usually leads to the reduction of generalization. In NLP, adversarial
training improves both robustness and generalization.



Introduction

« Adversarial Training

Adds adversarial perturbations to word embeddings and minimizes
the resultant adversarial loss around input samples.

* e.9. PGD, FreeLB, SMART, TextAT

« Adversarial Example in Natural Languages

Produce actual adversarial examples.
« e.g. ELECTRA, MacBERT
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Method

Standard adversarial training seeks to find optimal parameters 8™ to minimize the maximum risk for
any 0 within a norm ball as:

inlK - ax L X +4). : |
MinE(z,y)~p | tax (fo(X +0).y)|. (1)

where D is the data distribution, ¥ is the label, and L is some loss function. We use the Frobenius
norm to constrain 0. For neural networks, the outer “min” is non-convex, and the inner “max’ is

non-concave.

Increase loss In input and decrease loss In parameter



Method

« PGD

111111 E(z.y)~D ngll.lf? L(fe(X +9).y)]|.

Ot+1 = 5 p<c (0¢ + g(d:)/||g(0¢)| F) - (2)

where g(0;) = VsL(fg(X + &;),y) is the gradient of the loss with respect to 4, and IT} 5. <,
performs a projection onto the e-ball. To achieve high-level robustness, multi-step adversarial ex-

amples are needed during training, which is computationally expensive. The K -step PGD (/& -PGD)
requires /' forward-backward passes through the network, while the standard SGD update requires
only one. As a result, the adversary generation step in adversarial training increases run-time by an
order of magnitudea catastrophic amount when training large state-of-the-art language models.




Method

Algorithm 1 “Free” Large-Batch Adversarial Training (FreeLB-K)

Require: Training samples X = {(Z,y)}, perturbation bound ¢, learning rate 7, ascent steps K,
ascent step size «

1: Initialize 6

2: forepoch=1...N,., do

3: for minibatch B C X do

4: (5[] — ﬁ[ﬁr(—&] E)

S: go < U

6: fort=1...K do

7 Accumulate gradient of parameters ¢

8: gt < gi—1 + %E(z,y)eB[VG L(fo(X +d:-1). 9)]
0: Update the perturbation 6 via gradient ascend
10: Gadv +— Vs L‘(fB(X+6t—1)r;y)
I1: O H||§Hp£e(§t—l + Q- gad-u/”gadv”F)
12: end for
13: 0<+—0—71gK
14: end for

15: end for




Experiment

Method | MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B

(Acc) (Acc) (Acc) (Acc) (Acc) (Acc) (Mcc) (Pearson)
Reported [90.2 04.7 92.2 86.6 06.4 90.9 68.0 024
Relmp |- - - 85.61 (1.7)]96.56 (.3)[90.69 (.5)|67.57 (1.3)]92.20 (.2)
PGD 90.53 (.2)|94.87 (.2)]92.49 (.07)|87.41 (.9) |96.44 (.1)[90.93 (.2)|69.67 (1.2)]92.43 (7.)
Free AT 190.02 (.2)]94.66 (.2)]92.48 (.08)|86.69 (15.)]96.10 (.2)|90.69 (.4)]68.80 (1.3)[92.40 (.3)
FreeLB [90.61 (.1)[94.98 (.2)]92.60 (.03)88.13 (1.2)(96.79 (.2)|91.42 (.7)|71.12 (.9) |92.67 (.08)

Table 1: Results (median and variance) on the dev sets of GLUE based on the RoBERTa-large model, from 5

runs with the same hyperparameter but different random seeds. Relmp 1s our reimplementation of RoBERTa-
large. The training process can be very unstable even with the vanilla version. Here, both PGD on STS-B and
FreeAT on RTE demonstrates such instability, with one unconverged instance out of five.



Experiment

Model Score CoLA |SST-2| MRPC | STS-B QQP |MNLI-m/mm|QNLI|RTE|{WNLI| AX
8.5k | 67k 3.7k Tk 364k 393k 108k |2.5k| 634

BERT-base’ | 78.3 | 52.1 | 93.5 |88.9/84.8(87.1/85.8/71.2/89.2| 84.6/83.4 | 90.5 |66.4| 65.1 |34.2
FreeLB-BERT| 79.4 | 54.5 | 93.6 |88.1/83.5|87.7/86.7|72.7/89.6| 85.7/84.6 | 91.8 |70.1| 65.1 |36.9
MT-DNN? 87.6 | 68.4 | 96.5 (92.7/90.3|191.1/90.7|73.7/89.9| 87.9/87.4 | 96.0 |86.3| 89.0 [42.8
XLNet-Large3| 88.4 | 67.8 | 96.8 [93.0/90.7{91.6/91.1{74.2/90.3] 90.2/89.8 | 98.6 |86.3| 90.4 [47.5
RoBERTa* 88.5 | 67.8 | 96.7 [92.3/89.8|92.2/91.9|74.3/90.2] 90.8/90.2 | 98.9 |88.2| 89.0 |48.7
FreeLB-RoB | 88.8 | 68.0 | 96.8 [93.1/90.8/92.4/92.2/74.8/90.3| 91.1/90.7 | 98.8 |88.7| 89.0 |50.1
Human 87.1 ] 66.4 | 97.8 |86.3/80.8|92.7/92.6/59.5/80.4| 92.0/92.8 | 91.2 |193.6] 959 | -

Table 2: Results on GLUE from the evaluation server, as of Sep 25, 2019. Metrics are the same as the
leaderboard. Number under each task’s name 1s the size of the training set. FreeLB-BERT is the single-model
results of BERT-base finetuned with FreeLB, and FreeLB-RoB 1s the ensemble of 7 RoBERTa-Large models
for each task. References: : (Devlin et all.[2019): 2: (Liu et al., 20194): *: (Yang et al., 2019); 4. (Liu et al..
2019h).



Experiment

Comparing the Robustness Table |5|provides the comparisons of the maximum increment of loss
in the vicinity of each sample, defined as:

ALmax(X.€) = X L(fo(X +9).y) — L(fo(X),y). (5)
Methods RTE CoLA MRPC
M-Inc | M-Inc (R) | N-Loss | M-Inc | M-Inc (R) | N-Loss | M-Inc | M-Inc (R) | N-Loss
10~ | a0 | a0 a0 | a0 | o™ | a0~ | a0~ | a07?
Vanilla 5.1 53 4.5 6.1 5.7 5.2 10.2 10.2 [.9
PGD 4.7 4.9 6.2 [28.2 130.1 436.1 5.7 5.7 54
FreeLB 3.0 2.6 4.1 1.4 [.3 7.2 3.6 3.6 2.7

Table 5: Median of the maximum increase in loss in the vicinity of the dev set samples for RoBERTa-Large
model finetuned with different methods. Vanilla models are naturally trained RoBERTa’s. M-Inc: Max Inc, M-
Inc (R): Max Inc (R). Nat Loss (N-Loss) is the loss value on clean samples. Notice we require all clean samples
here to be correctly classified by all models, which results in 227, 850 and 355 samples for RTE, CoLLA and
MRPC, respectively. We also give the variance in the Appendix.



Summary

* The method leverages recently proposed “free” training strategies (accumulate
gradient of parametes ) to enrich the training data with diversified adversarial
samples at no extra cost than PGD-based adversarial training.

 Perform diversified adversarial training on large-scale state-of-the-art models.

* Only adversarial examples are used for training.
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Introduction

* Due to the limited data from the target task/domain and the extremely high
complexity of the pre-trained model, aggressive fine-tuning often makes the
adapted model overfit the training data of the target task/domain and
therefore does not generalize well to unseen data.

 To effectively control the extremely high complexity of the model, this
method propose a Smoothness-inducing Adversarial Regularization

technique.



Smoothness-inducing Adversarial Regularization

« This method solves the following optimization for fine-tuning:

ming F(0) = L(0) + A\sRs(0). (1)
where L£(6) is the loss function defined as

L) =+ >0 0(f(xi:0), vi).

Here we define Rg(6) as

Rs(0) = i Z max  ls(f(z:0), f(x:0)),

n 1 |Zi—x:||p<e



Smoothness-inducing Adversarial Regularization

R(0) = — nax Co(f(z;:0), f(x;:0)),
s(0) ”;”Eigimie (f(xs:0), f(xi:0))

By minimizing the objective, we can encourage f to be smooth within
the neighborhoods of all input. Such a smoothness-inducing property is
particularly helpful to prevent overfitting and improve
generalization on a low resource target domain for a certain task.



Smoothness-inducing Adversarial Regularization

1 . | |
Rs(f) = — > | max C(f(T4:0), f(23:0)).
' i—1 Li—Ti||lp>=€

For classification tasks, f(-; @) outputs a probability simplex, and Lis
chosen as the symmetrized KL-divergence:

ls(P, Q) = DxL(P||Q) + Dkr(Q||P);

For regression tasks, f(-; @) outputs a scalar, and ;is chosen as the
squared loss:

s(p,q) = (p — q)*



Experiment

Model MNLI-m/mm| QQP | RTE| QNLI| MRPC [CoLA|SST| STS-B

Acc Acc/F1 | Acc| Acc | Acc/F1 | Mcc |Acc|P/S Corr
BERTg4sE

BERT (Devlin et al., 2019) 84.4/- - - 88.4 -/86.7 - 1927 -

BERTRermp 84.5/84.4 | 90.9/88.3| 63.5| 91.1 | 84.1/89.0| 54.7 [92.9(89.2/88.8

SMARTRBERT 85.6/86.0 | 91.5/88.5| 71.2| 91.7 | 87.7/91.3| 59.1 |93.090.0/89.4

ROBERTHLARGE

RoBERTa (Liu et al., 2019c¢) 90.2/- 02.2/- | 86.6| 94.7 -/90.9 | 68.0 196.4| 92.4/-

PGD (Zhu et al., 2020) 90.5/- 092.5/- | 87.4) 94.9 -/90.9 | 69.7 196.4| 92.4/-

Free AT (Zhu et al., 2020) 90.0/- 92.5/- | 86.7| 94.7 -/90.7 | 68.8 196.1| 92.4/-

FreeLLB (Zhu et al., 2020) 90.6/- 92.6/- | 88.1| 93.0 -91.4 | 71.1 |96.7| 92.7/-

SMARTRoBERT: 91.1/91.3 | 92.4/89.8] 92.0| 95.6 | 89.2/92.1| 70.6 96.9|92.8/92.6

Table 1: Main results on GLUE development set. The best result on each task produced by a single model is in
bold and “-” denotes the missed result.



Experiment

Model /#Train CoLA|SST| MRPC | STS-B QOQP [MNLI-m/mm |QNLI |[RTE |WNLI |AX |Score | #param
8.5k |67k| 3.7k Tk 364k 393k 108k |2.5k | 634
Human Performance|66.4 |97.8|86.3/80.8{92.7/92.6]59.5/80.4] 92.0/928 [91.2 [93.6 | 959 | - [87.1 | -
Ensemble Models
RoBERTa' 67.8 196.7\92.3/89.8[92.2/91.9|74.3/90.2| 90.8/90.2 98.9 |[88.2 | 89.0 |48.7 | 88.5 356M
FreeLB~ 68.0 [96.8|93.1/90.8({92.4/92.2|74.8/90.3| 91.1/90.7 98.8 [88.7 | 89.0 |50.1 | 88.8 356M
ALICE® 69.2 |97.1|93.6/91.5(92.7/92.3|74.4/90.7| 90.7/90.2 00.2 |87.3 | 89.7 |47.8 | 89.0 340M
ALBERT? 69.1 [97.1|93.4/91.2{92.5/92.074.2/90.5| 91.3/91.0 00.2 |89.2 | 91.8 |[50.2 | 894 | 235M~
MT-DNN-SMARTT [69.5 [97.5(93.7/91.6]92.9/92.5(73.9/90.2] 91.0/90.8 00.2 |89.7 | 945 |[50.2 | 89.9 356M
Single Model

BERT arGe" 60.5 |94.9|89.3/85.4|87.6/86.5|72.1/89.3| 86.7/85.9 92.7 (70.1 | 65.1 |39.6 |80.5 335M
MT-DNN® 62.5 [95.6|90.0/86.7|88.3/87.7|72.4/80.6| 86.7/86.0 3.1 |75.5 | 65.1 (403 | 827 335M
T5® 70.8 |97.1|91.9/89.2{92.5/92.1|74.6/90.4| 92.0/91.7 96.7 (92.5 | 93.2 |53.1 | 89.7 [11.000M
SMARTRoBERT: 65.1 [97.5(93.7/91.6(92.9/92.5|74.0/90.1| 91.0/90.8 05.4 [87.9 |91.8% [50.2 | 884 356M

Table 2: GLUE test set results scored using the GLUE evaluation server. The state-of-the-art results are in bold.
All the results were obtained from https://gluebenchmark.com/leaderboard on December 5, 2019. SMART uses
the classification objective on QNLI. Model references: I Liu et al. (2019¢); 2Zhu et al. (2020); E"Wang et al.
(2019); *Lan et al. (2019); ° Devlin et al. (2019); ® Liu et al. (2019b): " Raffel et al. (2019) and ® He et al. (2019),
Kocijan et al. (2019). * ALBERT uses a model similar in size, architecture and computation cost to a 3,000M
BERT (though it has dramatically fewer parameters due to parameter sharing). T Mixed results from ensemble and

single of MT-DNN-SMART and with data augmentation.



Experiment

Method Dev Test
RI [R2 | R3 | All | RI | R2 | R3 | Al
MNLI + SNLI + ANLI + FEVER
BERT, arae (Nic etal. 2019) | 574 | 483 | 435 1493 | - | - 142
XLNet apap (Nic et al.2019) | 67.6 | 507 | 483 | 55.1 | - | - 52.0
ROBERTa apae (Nic ctal. 2019) | 73.8 | 4890 [ 444 | 537 | - | - | - | 497
SMART RoBERTAL ARGE 745 | 500 | 47.6 | 57.1 | 72.4 | 49.8 | 503 | 57.1
ANLI

RoBERTa arce (Nie etal. 2019) | 713 1433 [ 430 [ 510 - | - | - | -
SMART RoBERTeLARGE 742 [ 495 | 492 | 57.1 | 72.4 | 50.3 | 495 | 56.9

Table 6: Experiment Result for Each Round of ANLI.



Summary

« This method propose an explicit regularization to effectively control the model
complexity at the fine-tuning stage.

« This method compare the adversarial example with the normal example.
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Introduction

Different from pixels in images or signals in audios, embeddings used in texts
possess abundant semantic information. Therefore, perturbations are less
focused on certain tokens when randomly initialized within the batch processing.
To tackle this problem, this paper accumulate the perturbations of discrete tokens

throughout the training process.

In this paper, we introduce two steps to create better adversarial samples:
(1) global accumulated token perturbation;

(2) discrete token normalization ball.



Method

(1) global accumulated token perturbation

We create global accumulated perturbation Z € R¥*P, where N is the vocabulary
size of model embedding space. For each batch, adversarial perturbations are
Initialized by the corresponding perturbation from the global accumulated
perturbation Z. After K steps of adversarial training forward pass, we
accumulate the gradients calculated by the given data and update the global
accumulated perturbation Z.

Mo < Z|wi]
gy < Gy 1 T %E(X.y)eﬁ:V&L(fﬁ(x +0i1+mMy_q). '.U)]

Zw;] + n,



Method

(2) Normalization Ball of Discrete Tokens

Since our core idea Is to take the discrete nature of texts into consideration,
we constrain perturbations with a tighter token-level normalization ball

Instead of naive Frobenius normalization ball.
16| F
mjax(||5]||F)

We add a token-level scaling index: n' =

We can rewrite the normalization ball constraint as:

8 =n'* (811 + ag(6i_1)/ll9(8i—)|lz) (3)
0y = 4] 4
t HHﬁllpif( t) (4)



Experiment

RTE OQNLI MRPC ColLA SST STS-B  MNLI-m/mm QQP
Acc Acc/fl Mcc Acc P/S Corr Acc Acc/fl Acc

BERT-BASE 66.4 90.5 88.9/84.8 52.1 93.5 87.1/85.8  84.6/83.4  71.2/89.2
FreelLB 70.1 91.8% 88.1/83.5 54.5 93.6  87.7/86.7  85.7/84.6  72.7/89.6

-i
TextAT(ours) 71.0 91.7 88.9/84.5 55.9 945 86.8/85.7  85.2/84.7  72.8/89.5

Model

Table 2: Evaluation results on the test set of GLUE benchmark. Results use the evaluation server on GLUE website.
QNLI* in FreeLLB is formed as pairwise ranking task.



Summary

« PGD generate multi-step adversarial examples to achieve high-level
robustness, but only use the last gradient.

* FreeLB take the average gradient in K iterations.

« TextAT propose a global accumulated token perturbation and a token-
aware Normalization Ball.
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Method

sample
the —[MASK] —> -->» the —> —> original
chef — chef —>» chef —» ... —> original
cooked —> [MASK] —> ?tigf:;ﬂffoar --> ate —> Dl(sEiré?-;—léit)or —> replaced
the —» the —>» small MLM) the — —> original
meal —» meal —> meal —>| —> original

Figure 2: An overview of replaced token detection. The generator can be any model that produces
an output distribution over tokens, but we usually use a small masked language model that is trained
jointly with the discriminator. Although the models are structured like in a GAN, we train the‘
generator with maximum likelihood rather than adversarially due to the difficulty of applying GANs
to text. After pre-training, we throw out the generator and only fine-tune the discriminator (the
ELECTRA model) on downstream tasks.



Rank Name URL Score ColLA SST-2 MRPC S5TS-B QGP MNLI-m MNLI-

1 HFLIFLYTEK MacALBERT + DKM 90.7 748 97.0 945/926 92.8/92.6 74.7/90.6 91.3 9
+ 2 Alibaba DAMO NLP StructBERT + TAPT E)J 90.6 753 97.3 93.9/91.9 93.2/92.7 74.8/91.0 90.9 9
+ 3  PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6 73.5 97.2 94.0/92.0 93.0/924 76.1/91.0 91.6 9
4 ERNIE Team - Baidu ERNIE g 904 744 975 93.5/914 93.0/92.6 75.2/90.9 914 9
5 T5 Team - Google T5 E’J 90.3 716 97.5 92.8/90.4 93.1/92.8 75.1/90.6 92.2 9
6 Microsoft D365 Al & MSR Al & GATECHMT-DNN-SMART E/J‘ 89.9 695 975 93.7/91.6 92.9/92.5 73.9/90.2 91.0 9
+ 7 Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024) E’J‘ 89.7 705 97.5 93.4/91.2 92.6/92.3 75.4/90.7 91.4 9
+ 8 ELECTRA Team ELECTRA-Large + Standard Tricks E’J‘ 89.4 71.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 91.3 9
+ 9 Huawei Noah's Ark Lab NEZHA-Large 89.1 699 97.3 93.3/91.0 92.4/91.9 74.2/90.6 91.0 9
+ 10 Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) l:};' 884 68.0 96.8 93.1/90.8 92.3/92.1 74.8/90.3 911 9
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Introduction

Instead of masking with [MASK] token, which never appears in the fine-tuning stage,
we propose to use similar words for the masking purpose. A similar word is
obtained by using Synonyms toolkit (Wang and Hu, 2017), which is based on
word2vec similarity calculations. If an N-gram is selected to mask, we will find

similar words individually. In rare cases, when there is no similar word, we will
degrade to use random word replacement.

Chinese English
Original Sentence (#FFHE PSRN R — A AR . we use a language model to predict the probability of the next word.
+CWS (% FH 11— L ﬁﬂ 3 ﬁi!l RSN ASENOE -3 4 -
+ BERT Tokenizer FHETER WM~ ] E. we use a language model to pre ##di ##ct the pro ##ba ##hility of the next word .
Original MasKing FHEZEMIBEMM T — iﬂ 1 WE = . we use a language [M] to [M] #2di ##ct the pro [M] #hility of the next word .
+ WWNM F S = [M]IM]E[M]IM] F — 19 89 HE 2 . we use a language [M] to [M] [M] [M] the [M] [M] [M] of the next word .
++ N-gram Masking f';*' ﬂ[\[][\[][\[][\[])l' |"'r]||"'-]| Fo— 4~ ia ) = we use a [M] [M] to [M][M] [M] the [M] [M] [M] [M] [M] next word .
+++ Mac Masking FHEERE LR F A JLE. we use a text system to ca ##le #ulate the po #isi ##bility of the next word .

Figure 1: Examples of the masking strategies. For clarity, we also include an English example.



Experiment

Sentence Pair XNLI LCQMC BQ Corpus
Matching Dev Test Dev Test Dev Test
BERT TT1.8 7.4 7T71.8715 | 89.4 384) 86.9 364) | 86.0 855  84.8 (84.6)
ERNIE 79.7 (79.4y T78.6 (782 | 80.8 806y 87.2 1700 | 86.3 855  85.0 (84.6)
BERT-wwm 79.0 784y 78.2 7800 | 89.4 802y 87.0 168 | 86.1 8560 85.2 (84.9)
BERT-wwm-ext 79.4 7860 T8.7 783 | 89.6 @192y 87.1 866 | 86.4 @55  85.3 (84.8)
RoBERTa-wwm-ext 80.0 792y 788783 | 89.0@ws7 86.4 w61) | 86.0 @154  85.0 (84.6)
MacBERT-base 80.4 (7957 79.3789) | 89.693 86.5 163 | 86.0 @54 85.1 847
RoBERTa-wwm-ext-large 82.1 13 81.2 0.6 | 90.4 9.0 87.0 368 | 86.3 857  835.8 (349
MacBERT-large 82.4 1.8 813606 | 90.6 w03 87.667.1) | 86.2@857  85.6 85.0)

Table 6: Results on sentence pair matching tasks: XNLI, LCQMC. and BQ Corpus.



Summary

« Adversarial training improves both robustness and generalization.

« Many recent studies try to add adversarial training in the pre-trained
models, and achieve better results.

« Token-level adversarial training (including token-level perturbations and
token-level word replacement) can benefit the NLU task.
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