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What is Neural Architecture Search (NAS)

Selecting the optimal network architecture automatically via machine instead of 
design it manually.

It is an important aspect of AutoML.



NAS search space
1. Architecture space

Every layer (even an activation) in a model is involved

2. Cell space

Multiple layers compose a single cell and cells are

involved as search space (smaller size)

Elsken, Thomas, Jan Hendrik Metzen, and Frank Hutter. "Neural Architecture Search: A Survey." 
Journal of Machine Learning Research 20 (2019): 1-21.



NAS Search Strategy
Traditionally, the search procedure is not differentiable

1. Random Search: random select a series of models and test their performance

2. Evolutionary method: shrink the search space step by step via filtering 
low-performance models using fewer training steps.

3. Reinforcement Learning: regard a the generation of a model as an action of the 
agent and the reward is the performance of current generation.

4. Gradient-based method: transfer the procedure as a differentiable operation 
using soft weights to combine different candidate ops for a node. (Most popular 
approach now)



NAS Performance Estimation Strategy (Speed up)
1. Lower Fidelity Estimates: training using fewer epochs, subset of the data, 

downscaled models, etc.

2. Learning Curve Extrapolation: training stops when the performance can be 
extrapolated after few epochs.

3. Weight Inheritance: model can be trained from a parent model.

4. One-shot model: only the one-shot model is trained while its weight is shared 
across different architectures. 



DARTS: Differentiable Architecture Search

Hanxiao Liu (CMU), Karen Simonyan (DeepMind), Yiming Yang (CMU)

ICLR 2019



Contribution
1. It transforms the NAS problem into differentiable one using soft weighting on 

the possible operations of nodes in a complex topologies, which can be used 
on both convolutional and recurrent networks.

2. Such method can also achieve efficiency improvement, as it uses 
gradient-based optimization to find the best architecture among all possible 
ones jointly instead of one by one.



Search Space 
It is a cell-level search, in which each cell is a directed acyclic graph (DAG), in 
which each node xi is a representation and edge (i, j) is the operation oi, j on xi.

The final representation of node j is the combination of results from all input edges



Optimization Procedure
Given a set of operation    , the output of an operation is weighted using softmax 
on a weight vector         in dimension     .

Thus the goal is jointly learn the architecture    and layer weight     within all mixed 
operations, given the training loss          and validation loss



Gradient Approximation
Directly optimize the objective is too resource-consuming with complexity

An approximation is

Applying chain rule yields

Where                                          is a one-step forward model.

The second item is approximated using finite difference approximation

   



DARTS Algorithm
The final optimization on    turns to be following, with complexity

The algorithm will optimize     and      iteratively, in which the optimization of      is  
described as above

max value in     for each node indicates the selected operation



Experiments 
DARTS is tested on CIFAR-10 (conv net) and PTB (RNN)

CIFAR-10
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Conclusion
DARTS significantly reduces the resource consumption of NAS while provides 
comparable performance compared to RL or Evolution approaches, which makes 
it followed by many related works (690 citations in past 2 years).

Gradient-based NAS has also become the main trend, 80% of last related papers 
use gradient-based optimization.



NAS in NLP
1. The Evolved Transformer (ICML 2019, Google, Quoc V.Le)
2. Continual and Multi-Task Architecture Search (ACL 2019, UNC Chapel Hill)
3. Improved Differentiable Architecture Search for Language Modeling and 

Named Entity Recognition (EMNLP 2019 (short), NEU China)
4. Learning Architectures from an Extended Search Space for Language 

Modeling (ACL 2020, NEU China)
5. Improving Transformer Models by Reordering their Sublayers (ACL 2020, UW 

and Allen AI)

https://arxiv.org/abs/1901.11117
https://arxiv.org/pdf/1906.05226.pdf
https://www.aclweb.org/anthology/D19-1367/
https://www.aclweb.org/anthology/D19-1367/
https://arxiv.org/abs/2005.02593
https://arxiv.org/abs/2005.02593
https://arxiv.org/abs/1911.03864


1. The Evolved Transformer

This paper utilizes evolution algorithm to search a better architecture of 
Transformer for MT task.

The search space is 14 blocks (6 for encoder and 8 for decoder), each block 
contains left and right branch (input, normalization, layer, output dimension and 
activation in each of them) and combination function

So, David, Quoc Le, and Chen Liang. "The Evolved Transformer." International Conference on Machine Learning. 2019.



Evolution algorithm
1. Random sampling architecture as the initial child models, build a set of small 

training step number set <s, s1, s2,...>
2. Train each model with a small step s and evaluate their fitness (performance)
3. Set the hurdle as the mean fitness of all models. Models with lower fitness 

than hurdle will be fitered. 
4. Rest models will be trained for further step si and repeat 2,3,4 until all step 

numbers in a set are used or no model left.

y-axis is the fitness while the x-axis is the order of the 
generating of candidate models. Solid lines are hurdles.



Experiment and results
It uses WMT datasets, initial model number m=5000, and step numbers set are 
<60k, 60k, 120k>， ~50,000 TPU hour (~ 1,000,000 GPU hour) to find 20 best 
architecture and find the best one with full training.



Conclusion
ET only provides 0.2 BLEU value promotion compared to large transformer, and a 
bit more obvious improvement on small transformer with BLEU value 0.7, which 
are minor for MT task.

The experiment cannot be reproduced due to huge computation resource 
requirements. Thus using traditional algorithm including evolution algorithm as well 
as lage models in NAS is not an ideal direction.



2. Continual and Multi-task Search

This paper utilizes ENAS (Efficient Neural Architecture Search) with some 
modifications in sequential or combined multi-task tasks to enhance the 
generalization as well as performance of obtained model architectures.

ENAS: Using a RNN as a controller to determine the network structure. Two steps: 
1) controller sampler a architecture and optimize its parameters.
2) controller sampler a architecture and use its validation performance as the loss 
to optimize the parameters of itself.

Pasunuru, Ramakanth, and Mohit Bansal. "Continual and Multi-Task Architecture Search." Proceedings of the 57th Annual Meeting of the 
Association for Computational Linguistics. 2019.



Continual architecture search (CAS)
Given several datasets sequentially 

1) The model on the first dataset d1 trained using ENAS and obtaining parameters            
sds with sparse constraint                              and corresponding architecture dag1
2)  In next dataset d2 run ENAS but with parameters initialized from       , obtaining 
architecture dag2 and parameters      with extra loss item                             , where       
is current parameter change compared to    
3) Continue 2) for following datasets, using the final parameters but corresponding 
architecture in evaluating



Multi-task architecture search (MAS)
Given several datasets at the same time.

All datasets will use the shared model, but the loss for 
training the controller will become the joint loss for 
current model on all datasets

Such obtained architecture can obain a higher 
generalization on all datasets. 



Experiments
Both CAS and MAS are tested on text classification tasks (QNLI, RTE, WNLI) and 
video captioning tasks (MSR-VTT, MSVD, DiDeMo)

The generalization performance indeed shows promotion due to more data is 
involved in the training.

Performance on RTE by raw LSTM, 
ENAS on each dataset and MAS

Performance on DiDeMo by raw LSTM, 
ENAS on each dataset and MAS

Performance on text classification by CAS 
compared to baselines

Performance on video captioning by CAS compared to baselines



3. Using DARTS in LM and NER 

This paper tries to improve the performance of searched architecture by modifying 
the raw DARTS method. 

Jiang, Yufan, et al. "Improved differentiable architecture search for language modeling and named entity recognition." Proceedings of the 2019 
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing 
(EMNLP-IJCNLP). 2019.

Raw DARTS: softmax weight is calculated 
independently on the edge node(cell) to node(cell).

Modified DARTS:  the weight of all edges imported to a 
node will be calculated together



Experiment
Such approach is substantially a additional pruning compared to raw one.

It is tested on PTB LM task and CoNLL-2003 NER task, showing a very slight 
promotion on performance and search cost compared to DARTS.

CoNLL-2003 NER

PTB



This paper is an extend of previous paper, who uses both intra-cell level DARTS 
(the same as original DARTS) and inter-cell level DARTS (new parts, 
substantially adding attention to RNN) on LM and NER tasks.

For a RNN, inter-cell learns the way how current cell connecting with previous 
cells and the input vectors. While intra-cell learns the intra architecture of a cell.

4. Further extend DARTS on LM and NER
Li, Yinqiao, et al. "Learning Architectures from an Extended Search Space for Language Modeling." Proceedings of the 58th Annual Meeting of the 
Association for Computational Linguistics. 2020.



Combine inter-cell and intra-cell search
It splits RNN into 3 functions,       that generates       ,       that generates      and       
takes the output from former two functions and generate     . Since each function 
has two input vectors, DAGs can be created on them separately and the final 
output is the element-wise product of the last node from them                    

The original claimed two input sources for each function are 

But in the real implementation, they are simplified(???) as

Only one DAG is remained in each function so the function F is totally unused?. 
In fact it is just a refined version of DARTS with two intermediate states       and     
,more previous state rather than last step are considered, just like RNN with 
attention.



Experiments
It is also tested on LM tasks (PTB and WikiText-103) and NER tasks 
(CoNLL-2003, WNUT-2017, CoNLL-2000, same architecture transferred from 
WikiText-103). There is no doubt that this method is obviously better than DARTS 
(it is substantially RNN with attention compared to raw RNN).



5. Sandwich architecture for Transformer

This paper split a transformer layer into self-attention sublayer    and feedforward 
sublayer    and a raw transformer can be represented by  

They reorder these sublayers randomly to form a new transformer, trying to 
promote its performance. And based on their analysis, they proposes a sandwich 
transformer in which multiple redundant      are stacked in the lower layers while 
multiple redundant    are stacked in the higher layers.

This paper can be regarded as a simplified cell-level NAS in which there is only 
one input edge and one output edge in the DAG for each cell.

Press, Ofir, Noah A. Smith, and Omer Levy. "Improving Transformer Models by Reordering their Sublayers." Proceedings of the 58th Annual Meeting 
of the Association for Computational Linguistics. 2020.



Random search
    and     can be defined as the corresponding layer 
and residual connection after it.

Taking a 16-layer 16-head transformer with d=1024 as 
the baseline, each     contains 4d^2 parameters and each     
contains 8d^2 parameters(omitting bias). 

First 20 unbalance transformers with 16     and 16     
randomly ordered to test their PPL on WikiText-103, with 
raw transformer bold. It can be found most random 
architectures are worse than the raw one.



Random search

Then it randomly samples 20 architectures with the 
equivalent parameter numbers as the raw transformer 
but different layer numbers (may contains different 
numbers of     and     , the model depth ranges from 24 
layer (all     )  to 48 layers (all    ) ), also found general 
worse performance than the raw one.



Sandwich Transformer
However, they find that better models usually have  more    at first and more     at 
the last of the model according to their analysis

Therefore they propose sandwich transformer, with first k layers as    , last k layers 
as      and n-k       in the middle, which can be represented as

n=16, k ranges from 0 to 15, the best k is determined by the best performance on 
a specific acrossing all  enumerations.



Experiments
The sandwich model is tested on LM tasks 
(WikiText-103, Toronto Book Corpus, performance is 
measured by PPL), and character-level LM (text8 and 
enwik8) which shows slight promotion compared to 
transformer baselines.

WikiText-103

Book Corpus

Character-level LM



Experiments
It is also tested on MT tasks (WMT2014 En-de) using encoder-decoder 
architecture with additional cross-attention sublayer     involved in decoder.

The concatenation of self-attention and cross-attention       is used to replace      in 
the original sandwich. Using 6 layers in both encoder and decoder, with k varies 
from 0 to 5 with sandwich applied to encoder or decoder, it only achieves very 
slight promotion in BLEU under specific configurations.



Conclusion

● NAS in traditional NLP tasks usually cannot obtain as significant promotion as 
CV, as most popular models (e.g. transformers, pre-trained models) are 
already carefully designed.

● Gradient-based optimization for NAS is becoming a main direction instead of 
Evolution Algorithm or Reinforcement Learning due to the much less 
computing resource requirement (considering the 1M GPU hours in Evolved 
Transformer)

● Trying to simplifying or redesign the NAS problem for current NLP models is a 
possible direction (e.g. sandwich transformer), but I don’t think fine-grained 
NAS on NLP models is a good idea.

● Maybe NAS can be applied to some special setting of NLP tasks, e.g. 
few-shot learning, UDA, generalization across different datasets.



Some of our findings
● We applied meta-learning to GPT2 model under the few-shot config in 

PersonaChat, but find no promotion compared to simply fine-tuning.
It has the similar optimization objective as DARTS

So will it take effect by bring     so combine meta-learning with DARTS? 

● I found that zero-out the output of some specific neurons of BERT can 
enhance its generalization performance in QA tasks acrossing different 
question intents under some conditions (it can be regarded as a fine-grained 
version of NAS)

VS.



Thank you!


