Neural Architecture Search

Yu Cao

What is Neural Architecture Search (NAS)

Selecting the optimal network architecture automatically via machine instead of
design it manually.

It is an important aspect of AutoML.

NAS search space

1. Architecture space

Every layer (even an activation) in a model is involved

2. Cell space

Multiple layers compose a single cell and cells are

involved as search space (smaller size)

Elsken, Thomas, Jan Hendrik Metzen, and Frank Hutter. "Neural Architecture Search: A Survey."
Journal of Machine Learning Research 20 (2019): 1-21.

NAS Search Strategy

Traditionally, the search procedure is not differentiable

1.
2.

Random Search: random select a series of models and test their performance

Evolutionary method: shrink the search space step by step via filtering
low-performance models using fewer training steps.

Reinforcement Learning: regard a the generation of a model as an action of the
agent and the reward is the performance of current generation.

Gradient-based method: transfer the procedure as a differentiable operation
using soft weights to combine different candidate ops for a node. (Most popular
approach now)

NAS Performance Estimation Strategy (Speed up)

1.

Lower Fidelity Estimates: training using fewer epochs, subset of the data,
downscaled models, etc.

Learning Curve Extrapolation: training stops when the performance can be
extrapolated after few epochs.

Weight Inheritance: model can be trained from a parent model.

One-shot model: only the one-shot model is trained while its weight is shared
across different architectures.

DARTS: Differentiable Architecture Search

Hanxiao Liu (CMU), Karen Simonyan (DeepMind), Yiming Yang (CMU)

ICLR 2019

Contribution

1. It transforms the NAS problem into differentiable one using soft weighting on
the possible operations of nodes in a complex topologies, which can be used
on both convolutional and recurrent networks.

2. Such method can also achieve efficiency improvement, as it uses
gradient-based optimization to find the best architecture among all possible

ones jointly instead of one by one.

Search Space

It is a cell-level search, in which each cell is a directed acyclic graph (DAG), in
which each node x' is a representation and edge (i, /) is the operation o/ on x'.

The final representation of node j is the combination of results from all input edges

2@ = 37 009 (1)

| { »{
o e (3] [
LE \ % D/

Optimization Procedure

Given a set of operation 0, the output of an operation is weighted using softmax
on a weight vector () in dimension |O].
(i.5)
5(i’j)(:L') — Z exp(ao zi,j) O(.’II)

oc0 Qowreo oxploy")

Thus the goal is jointly learn the architecture « and layer weight w within all mixed
operations, given the training loss L:.in and validation loss Lya

min Lyq(w* (), a)

s.t. w(a) =argmin, Lirqin(w,a)

Gradient Approximation

Directly optimize the objective is too resource-consuming with complexity O(|a||w|)

An approximation is VaLlya(w*(a),)
zvaﬁval(w - ngctrain(w’ Cl/), Cl)

Applying chain rule yields ~ VaLuva(w',@) — V2 o\ Lirain(w, @) Vi Loa (W', @)
Where w' = w—&VLirain(w,) is a one-step forward model.
The second item is approximated using finite difference approximation

vactrain(w+? a) _ Vaﬁt"ai" (w_’a) 'w:t =w+ fvw’[«;al (w, a)
2€ ’

v?x,w‘ctrain(w, a)vw’ ‘Cval(wl, a) ~

DARTS Algorithm

The final optimization on a turns to be following, with complexity O(|a| + |w])

I (W’,) ValtrainW + €V Ly (W', @), @) Z"EVaLtrain(W — eVyLyg(W',), a)

The algorithm will optimize a and w iteratively, in which the optimization of @ is
described as above

Algorithm 1: DARTS - Differentiable Architecture Search

Create a mixed operation 6("7) parametrized by o"7) for each edge (i, j)

while not converged do
L 1. Update architecture o by descending V, L,q1(w — €V o, Lirain (W, @), @)

(£ = 0 if using first-order approximation)
2. Update weights w by descending V , L¢rqin(w,)

Derive the final architecture based on the learned «.

max value in a for each node indicates the selected operation

Experiments

DARTS is tested on CIFAR-10 (conv net) and PTB (RNN)

CIFAR-10

Rl todgine Test Error Params Search Cost #oDs Search

(%) (M) (GPUdays) °P Method
DenseNet-BC (Huang et al., 2017) 3.46 25.6 - - manual
NASNet-A + cutout (Zoph et al., 2018) 2.65 33 2000 13 RL
NASNet-A + cutout (Zoph et al., 201 8)f 2.83 3.1 2000 13 RL
BlockQNN (Zhong et al., 2018) 3.54 30.8 96 8 RL
AmoebaNet-A (Real et al., 2018) 3.34 £ 0.06 3.2 3150 19 evolution
AmoebaNet-A + cutout (Real et al., 2018)f 3.12 3.1 3150 19 evolution
AmoebaNet-B + cutout (Real et al., 2018) 2.55 +0.05 2.8 3150 19 evolution
Hierarchical evolution (Liu et al., 2018b) 370012 15.7 300 6 evolution
PNAS (Liu et al., 2018a) 341 +£0.09 2 225 8 SMBO
ENAS + cutout (Pham et al., 2018b) 2.89 4.6 0.5 6 RL
ENAS + cutout (Pham et al., 2018b)" 291 4.2 6 RL
Random search baseline® + cutout 329 =005 3.2 4 T random
DARTS (first order) + cutout 3.00 £ 0.14 3.3 1.5 7 gradient-based
DARTS (second order) + cutout 2.76 £ 0.09 33 4 7 gradient-based

Experiments

DARTS is tested on CIFAR-10 (conv net) and PTB (RNN)

PTB

" Perplexity Params VSearch Cost Search
Architecture vald test. (M) (GPUdays) T°P5 Method
Variational RHN (Zilly et al., 2016) 679 654 23 - - manual
LSTM (Merity et al., 2018) 60.7 58.8 24 - - manual
LSTM + skip connections (Melis et al., 2018) 60.9 58.3 24 - - manual
LSTM + 15 softmax experts (Yang et al., 2018) 58.1 56.0 22 - - manual
NAS (Zoph & Le, 2017) - 64.0 25 le4 CPU days 4 RL
ENAS (Pham et al., 2018b)" 68.3 63.1 24 0.5 4 RL
ENAS (Pham et al., 2018b)f 60.8 58.6 24 0.5 4 RL
Random search baseline? 61.8 594 23 2 4 random
DARTS (first order) 60.2 57.6 23 0.5 4 gradient-based
DARTS (second order) 58.1. 355.7 23 | 4 gradient-based

Conclusion

DARTS significantly reduces the resource consumption of NAS while provides
comparable performance compared to RL or Evolution approaches, which makes
it followed by many related works (690 citations in past 2 years).

Gradient-based NAS has also become the main trend, 80% of last related papers
use gradient-based optimization.

NAS in NLP

1. The Evolved Transformer (ICML 2019, Google, Quoc V.Le)

2. Continual and Multi-Task Architecture Search (ACL 2019, UNC Chapel Hill)

3. Improved Differentiable Architecture Search for Lanquage Modeling and
Named Entity Recognition (EMNLP 2019 (short), NEU China)

4. Learning Architectures from an Extended Search Space for Language
Modeling (ACL 2020, NEU China)

5. Improving Transformer Models by Reordering their Sublayers (ACL 2020, UW
and Allen Al)

https://arxiv.org/abs/1901.11117
https://arxiv.org/pdf/1906.05226.pdf
https://www.aclweb.org/anthology/D19-1367/
https://www.aclweb.org/anthology/D19-1367/
https://arxiv.org/abs/2005.02593
https://arxiv.org/abs/2005.02593
https://arxiv.org/abs/1911.03864

1. The Evolved Transformer

So, David, Quoc Le, and Chen Liang. "The Evolved Transformer." International Conference on Machine Learning. 2019.

This paper utilizes evolution algorithm to search a better architecture of
Transformer for MT task.

The search space is 14 blocks (6 for encoder and 8 for decoder), each block
contains left and right branch (input, normalization, layer, output dimension and
activation in each of them) and combination function

Evolution algorithm
1.

Fitness

Random sampling architecture as the initial child models, build a set of small
training step number set <s, s7, s2,...>

Train each model with a small step s and evaluate their fithess (performance)
Set the hurdle as the mean fitness of all models. Models with lower fitness
than hurdle will be fitered.

Rest models will be trained for further step si and repeat 2,3,4 until all step
numbers in a set are used or no model left.

y-axis is the fitness while the x-axis is the order of the
generating of candidate models. Solid lines are hurdles.

1
Model Number

Experiment and results

It uses WMT datasets, initial model number m=5000, and step numbers set are
<60k, 60k, 120k>, ~50,000 TPU hour (~ 1,000,000 GPU hour) to find 20 best
architecture and find the best one with full training.

TRAN ET

TASK SI1ZE PARAMS PARAMS TRAN PERP ET PERP TRAN BLEU ET BLEU
WMT’14 EN-DE BASE 61.1M 64.1M 4.24 +£0.03 4.03 +0.02 28.2+0.2 28.4+0.2
WMT’ 14 EN-DE BIG 210.4M 221.7M 3.87 £ 0.02 3.77 £ 0.02 29.1 £0.1 29.3+0.1
WMT’14 EN-DE DEEP 224.0M 218.1M 3.86 + 0.02 3.69 £ 0.01 29.2 £ 0.1 29.5 £ 0.1
WMT’14 EN-FR BASE 60.8 63.8M 3.61 +£0.01 3.42 +0.01 40.0 £ 0.1 40.6 + 0.1
WMT’ 14 EN-FR BI1G 209.8M 221.2M 3.26 £ 0.01 3.13 £ 0.01 41.2+0.1 41.3 +0.1
WMT'14 EN-CS BASE 59.8M 62.7M 4.98 £+ 0.04 4.42 +0.01 27.0 £ 0.1 27.6 £ 0.2
WMT' 14 EN-CS BiG 207.6M 218.9M 4.43 +£0.01 4.38 +0.03 28.1 £0.1 28.2 £ 0.1

LMIB BiG 141.1M 151.8M 30.44 +£0.04 28.60 £ 0.03 - -

Model Eml;eig:ing Parameters Perplexity BLEU A BLEU

Transformer 128 7.0M 8.62+0.03 213+£0.1 -

ET 128 72M 7.62+0.02 22.0+0.1 +0.7
Transformer 432 45.8M 4.65+001 273+0.1 -

ET 432 47.9M 4.36 +0.01 27.7 +£0.1 +04
Transformer 512 61.1IM 446 £0.01 27.7+0.1 -

ET 512 64.1M 4.22+0.01 282+0.1 +0.5
Transformer 768 124.8M 418 £0.01 285+0.1 -

ET 768 131.2M 4.00 £ 0.01 289 +0.1 +04
Transformer 1024 210.4M 4.05+0.01 288+02

ET 1024 221.7M 394 +£0.01 29.0+0.1 +0.2

Conclusion

ET only provides 0.2 BLEU value promotion compared to large transformer, and a
bit more obvious improvement on small transformer with BLEU value 0.7, which
are minor for MT task.

The experiment cannot be reproduced due to huge computation resource
requirements. Thus using traditional algorithm including evolution algorithm as well
as lage models in NAS is not an ideal direction.

2. Continual and Multi-task Search

Pasunuru, Ramakanth, and Mohit Bansal. "Continual and Multi-Task Architecture Search." Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. 2019.

This paper utilizes ENAS (Efficient Neural Architecture Search) with some
modifications in sequential or combined multi-task tasks to enhance the
generalization as well as performance of obtained model architectures.

ENAS: Using a RNN as a controller to determine the network structure. Two steps:
1) controller sampler a architecture and optimize its parameters.

2) controller sampler a architecture and use its validation performance as the loss
to optimize the parameters of itself. C T >

label distnbution

Continual architecture search (CAS)

Given several datasets sequentially

1) The model on the first dataset d1 trained using ENAS and obtaining parameters
01x with sparse constraint >_i%; [(161.4[.:]ll2)l1 and corresponding architecture dag1
2) In next dataset d2 run ENAS but with parameters initialized from 1.+, obtaining
architecture dag2 and parameters 6, with extra loss item L»(02x) = 161 - 24113, where
is currezx parameter change compared to 01

3) Continue 2) for following datasets, using the final parameters but corresponding

architecture in evaluating

Dataset d, Step-1: Step-2 |Dataset d, Step-3 d1 &S
s s ~48
dag, :
§ 2 o &
83

®>®
@, |
@

Q.
¢w
use
dag3

Multi-task architecture search (MAS)

Given several datasets at the same time.

All datasets will use the shared model, but the loss for
training the controller will become the joint loss for
current model on all datasets 7c = > 7

Such obtained architecture can obain a higher
generalization on all datasets.

Joint Reward ">~

from all datasets

Experiments

Both CAS and MAS are tested on text classification tasks (QNLI, RTE, WNLI) and
video captioning tasks (MSR-VTT, MSVD, DiDeMo)

The generalization performance indeed shows promotion due to more data is

. . .. Performance on text classification by CAS
involved in the training. compared to baselines

. Models [QNLI | RTE | WNLI
Performance on RTE by raw LSTM, Performance on DiDeMo by raw LSTM, PREVIOUS WORK
ENAS on each dataset and MAS ENAS on each dataset and MAS BiLSTM+ELMo (2018) 694 [50.1 | 65.1
Performance on DiDeMo BiLSTM+ELMo+A 201 9] : |
Cell Structure Performance on RTE Cell Structure M C B R e i ttnlg A(;ESL)INES6 e &
LSTM cell 52.3 LSTM cell 127 267 7.6 306 | [Baseline (with ELMo) 732 | 523
SVT\]LLII“';I 23‘2‘ MSR-VTTcell | 129 257 74 303 | | ENAS (Architecture Search) | 745 | 52.9
‘;f = MSVD cell 121 252 79 306 CAS RESUTTS
&Ti.‘:",r el 23'3 DiDeMOcell | 13.1 27.1 79 309 | [CAS Step-1 (QNLIraining) | 738 | N/A | N/A
e ' Multi-Task cell | 13.4 27.5 8.1 30.8 | | CAS Step-2 (RTE training) 736 | 541 | N/A
CAS Step-3 (WNLI training) 73.3 54.0 64.4

Performance on video captioning by CAS compared to baselines

Models MSR-VTT MSVD

C B R M AVG C B R M AVG
Baseline (Pasunuru and Bansal, 2017b) | 48.2 40.8 60.7 28.1 445 | 8.8 525 712 350 6l1.1
ENAS 489 413 612 281 449 | 872 529 717 352 618
CAS Step-1 (MSR-VTT training) 489 41.1 60.5 275 445 | NNA N/A N/A N/A N/A
CAS Step-2 (MSVD training) 484 40.1 599 27.1 439 | 881 524 713 351 61.7

3. Using DARTS in LM and NER

Jiang, Yufan, et al. "Improved differentiable architecture search for language modeling and named entity recognition." Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP). 2019.

This paper tries to improve the performance of searched architecture by modifying
the raw DARTS method.

Raw DARTS: softmax weight is calculated
independently on the edge node(cell) to node(cell). @B sofimex
i _ _exp(wy’)
ak: =

> k! exp(wk,)
Modified DARTS: the weight of all edges imported to a
node will be calculated together

i eXP(’w;{J)
k
Z]<z Zk’ exp(wk’)

(a) DARTS cell (b) Our cell

Experiment

Such approach is substantially a additional pruning compared to raw one.

It is tested on PTB LM task and CoNLL-2003 NER task, showing a very slight
promotion on performance and search cost compared to DARTS.

CoNLL-2003 NER

Model F1
best published

BiLSTM-CREF (Lample et al., 2016) 90.94
BiLSTM-CRF+ELMo (Peters et al., 2018) | 92.22
BERT Base (Devlin et al., 2018) 92.40
BERT Large (Devlin et al., 2018) 92.80
BiLSTM-CRF+PCE (Akbik et al., 2019) 93.18
Random RNNs w/o pre-trained LM 90.64
DARTS w/o pre-trained LM 91.05
[-DARTS (n = 2) w/o pre-trained LM 90.96
[-DARTS (n = 1) w/o pre-trained LM 91.23
Random RNNs 92.89
DARTS 93.13
I-DARTS (n = 2) 93.14
I-DARTS (n = 1) 93.47

>
'g —@— 1-DARTS
'é g(s) —a&— DARTS
A e
= 64
<>3 62 |
PTB 0 10 20 30 40
number of search epochs
. Perplexit Search Cost
Architecture val = tes); (GPU days)
V-RHN 679 | 654 -
LSTM 60.7 | 58.8
LSTM + SC 60.9 | 58.3
LSTM + SE 58.1 | 56.0 -
ENAS 60.8 | 58.6 0.50
DARTS 58.3 | 56.1 0.25
Random RNNs 63.7 | 61.2 -
I-DARTS (n =1) | 58.0 | 56.0 0.17
I-DARTS (n =2) | - - -

4. Further extend DARTS on LM and NER

Li, Yinqgiao, et al. "Learning Architectures from an Extended Search Space for Language Modeling." Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. 2020.

This paper is an extend of previous paper, who uses both intra-cell level DARTS
(the same as original DARTS) and inter-cell level DARTS (new parts,
substantially adding attention to RNN) on LM and NER tasks.

For a RNN, inter-cell learns the way how current cell connecting with previous
cells and the input vectors. While intra-cell learns the intra architecture of a cell.

Ut

b hy

]:Lt—l
heey —s()

O o

Tt—1 Tt—2 Tt-3

ht— il
hi—2 % ----------
eyt |

Combine inter-cell and intra-cell search

It splits RNN into 3 functions, f(-)that generates i._., g(-) that generates #: and ~(:)
takes the output from former two functions and generate k: . Since each function
has two input vectors, DAGs can be created on them separately and the final
output is the element-wise product of the last node from them F(o;8) =s*® s?

Function | o B

The original claimed two input sources for each function are

(") {he-1, 8} 1
. Bine -
But in the real implementation, they are simplified(???) as g(()) o B o

f(h[o,t—l]; x[l,t—l]) = fl(ht—15 x[t-m,t—l])
g(w[l,t]; h[O,t—l]) = gl(iBt; h[t—m,t—l])
Only one DAG is remained in each function so the function F is totally unused?.
In fact it is just a refined version of DARTS with two intermediate statei,_;, ani;
,more previous state rather than last step are considered, just like RNN with
attention.

Experiments

It is also tested on LM tasks (PTB and WikiText-103) and NER tasks
(CoNLL-2003, WNUT-2017, CoNLL-2000, same architecture transferred from
WikiText-103). There is no doubt that this method is obviously better than DARTS
(it is substantially RNN with attention compared to raw RNN).

Search Space Perplexity|Search Cost
TNt Hicthiod intra-cell|inter-cell Frny valid| test |(GPU days)
AWD-LSTM (Merity et al.. 2018c¢) - - 24M |61.2]58.8 -
Transformer-XL (Dai et al., 2019) - - 24M |56.7|54.5
PTB Mogrifier LSTM (Melis et al., 2019) - - 23M |51.4|50.1 -
ENAS (Pham et al., 2018) v - 24M |60.8]|58.6 0.50
RS (Li and Talwalkar, 2019) v - 23M |57.8(55.5 2
DARTST v - 23M |55.2]53.0 0.25
ESS - v 23M |54.1|52.3 0.5
ESS v v 23M |47.9|45.6 0.5
QRNN (Merity et al., 2018a) - 151M [32.0]33.0 -
Hebbian + Cache (Rae et al.. 2018) - - 129.9|29.7 -
WT-103| Transformer-XL (Dai et al., 2019) - 151M [23.1]|24.0 -
DARTST v 151M |31.4(31.6 1
ESS v v 156M |28.8|29.2 1.5

67.5

63.5

Perplexity

59.5

—@— NAS

— | | | | | |

10/1 9/2 8/3 7/4 6/5 5/6 4/7 3/8 2/9 1/10
Number of nodes (intra/inter)

5. Sandwich architecture for Transformer

Press, Ofir, Noah A. Smith, and Omer Levy. "Improving Transformer Models by Reordering their Sublayers." Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. 2020.

This paper split a transformer layer into self-attention sublayer§ and feedforward
sublayer [and a raw transformer can be represented by

sfsfsfsfsfsfsfsfsfsfsfsfsfsf

They reorder these sublayers randomly to form a new transformer, trying to
promote its performance. And based on their analysis, they proposes a sandwich
transformer in which multiple redundanfg are stacked in the lower layers while
multiple redundant [§ are stacked in the higher layers.

sssssssfsfsfsfsfsfsfsfffffff

This paper can be regarded as a simplified cell-level NAS in which there is only
one input edge and one output edge in the DAG for each cell.

Random search

B and [can be defined as the corresponding layer X1 = self-attention(Xo) + Xo
and residual connection after it. Xy = feedforward(X;) + X3

Model PPL

20.74
20.64
20.33
20.27
19.98
19.92
19.69
19.54
19.13
19.08
18.90
18.83
18.83
18.77
18.68
18.64
18.61
18.60
18.55
18.54
18.49
18.38
18.28
18.25

sfsfsffffssffsfss 1819

Taking a 16-layer 16-head transformer with d=1024 as
the baseline, each B contains 4d*2 parameters and each
conta:s 8d"2 parameters(omitting bias).

First 20 unbalance transformers with 16 B and 16 k4
randomly ordered to test their PPL on WikiText-103, with
raw transformer bold. It can be found most random
architectures are worse than the raw one.

Random search

Then it randomly samples 20 architectures with the
equivalent parameter numbers as the raw transformer
but different layer numbers (may contains different
numbers of Band E§, the model depth ranges from 24
layer (all B) to 48 layers (all @)), also found general
worse performance than the raw one.

PPL

Hh

H

U8 KON NON RON LON LGN Y N Y RON R RGN RGN B R hCgugHBRO@HEHEN '8 n
UEgHEOROREHEHEN0 mHEuEHBEOERMERERERMEORHEBEOREHEHEON BHEN i
LgugugoggoaEgHEREOROEORMEHEN RN HMEHMEHMEHMEHMENRHE R M
ogmEmnEmEmEmBoEmBEoRBEOREOERERERBEOERBEOROEHEMEO RO R
ngugugouEgoEHEOREOREOEHEHEHEHEDN HEHELOROEHENORHE N '8 L
U8 Y Y Bad et Bad B mhEuEHEMEORO RO EHEHMEMEHMEHEHMEN R B0 hg
hgoguogmnEo o g oo ERE RO EREREOROEREEORHEME G0N
g uEmEmBoEmEmERBEORHEHROEREEOROBOEHEMEMEHE 0RO
ngugmEmBE o EmEoEROEOROEHEMEN MEMEMEMEMEHE RO N)
ogmhgogoEmEmBo EmEmEMEOROEHEMEEORMERERMEREEO BB 0RO
L) RCN RCN ROE LGN LGN B ngugugooEooEMEROEHERMBEOREHEMEHE 0N
mEnhgogmEmEmEo EmEmEmRBE OB BHERMEMEMERERBEORMEMEREHE 0RO
HEOEHEO RO BN RO ngugOEHEHMEHEHENR HEuBuuEHEOEHEOEHENRO
HEHMBEORORHEHEN L et Rad BGE BGE BGE B Rd L et Rad RGN Rad AN G B N N}
N KON B ROE BON BGE Bad BB Bad BB Ead BB R W e Gl B B B B B L i N Mo}
HEHEHEMEREREREHEHEHEOROEN RO B0 DguEHEOROEHEMEHME DR H
DEguEHEHENO RN RO nguguEgHEMEORMERMEHBEORHEORHEO RN BHE G0N H
o EHREHERERERERE RO B RO EHEOREOEHEOROEORHEMEN RGO
HELOEHEMEGO RN QRGO N NON RON B RON KON BGN Bad ECB Bt BB BB B2 LGE d R B A
hEHEOEHEREREREHEORHEHEHEMEE N mEOEHERBEORHEO BHEHE N
HELEHEHENO RO RQB 08 RON RON RON Ead RGN Bad Bad Bad B2 Bad Bad Bad G 2B B N o)
mEmhgoEmEREmEO EHEHEREEEEREB OO R R R OB RO B
HEOEHEHMEO RN RO N KON RON R 0N LGN L) R mHELOROEMEMEMEN RO '8 §%
mEMEMEREREREREHEORHEREOREHEE N DB EMEORMEMEMENRH
HELEHEO RO QRN QRN U8 R RON Rad EON Bad RGN Bad Bad Bad Bad Bad Bad B LGE B N M)
Y e Bt B Bad Bad B B B Bad B B B G0 0 B LGB R BE B B e g B R
mEuguEgmBEo o EREoEROREROEHEOEMEMBEOEEOROENO RN RO N)
HEHMBEO RO RHEHEN Ll RON Rad Rad RGN BN B B L] RCH RGN RGN Rt R B B M

ngugugHBE o EHEREOROENROEHEREMBEORHEOROBOEHEN RN H

LY Y Bad Bad Bad B Bt B B Bt KO0 B LB G K) K28 G 0 G Y O R

L0} N LN K 8 Y RO B Rl B R K H] Rad Rald 1] «

H 2] L HEOEHEGORORNORNB «n 8 [1]

1] H 0 H [0} 0 [} H

L] H U8 R 0 1] «n

1] 0 1]

1] w0

Hh Hh

0

22.80
21.02
20.98
20.75
20.43
20.28
20.02
19.93
19.85
19.82
19.77
19.55
19.49
19.47
19.25
19.13
18.86
18.83
18.62
18.54
18.49
18.34
18.31
18.25
18.12

Sandwich Transformer

However, they find that better models usually have more B at first and more [at
the last of the model according to their analysis

16 16

o i EE Self-attention Q2 T EEE Self-attention
P B Feedforward ‘;E B Feedforward
e E 121 =T 12
5 c¢
8£ 10 5.9 101
o5 ok
ae 81 25
a8 o%
S< 6 S5 m
0§ og
of 44 o
cg o2
23 2 g
< <
O 4

Models that are Models that are Models that are Models that are
worse than baseline better than baseline worse than baseline better than baseline

Therefore they propose sandwich transformer, with first k layers as |, last k layers
as [and n-k BH in the middle, which can be represented as &R *B*

n=16, k ranges from 0 to 15, the best k is determined by the best performance on
a specific acrossing all enumerations.

WikiText-103

Experiments
Model Test
. . Baseline (B ki and Auli, 2019) 18.70
The sandwich model is tested on LM tasks nsforror BL (oo sl 3% 1850
- . kNN-LM (Khandelwal et al., 2019 15.79
(WikiText-103, Toronto Book Corpus, performance is Ll
Baseline (5 Runs) 18.63 4+ 0.26
measured by PPL), and character-level LM (text8 and Sandwichs’ 17.96
enwik8) which shows slight promotion compared to 192
transformer baselines. wo{ |
%185 I
Character-level LM ml&o_ ——t—
Model text8 (BPC) enwik8 (BPC) i | ,
Baseline andwichZ®
Transformer-XL (Dai et al., 2019) 1.08 0.99 e
Adaptive Span (Sukhbaatar et al., 2019) 1.07 0.98
Compressive (Rae et al., 2020) — 0.97 Book Corpus
Baseline (Adaptive Span; 5 Runs) 1.0802 £ 0.0103 0.9752 & 0.0008 124 PPL
SandWiCh§4 1.076 o Baseline (5 runs) 11.89 £+ 0.35

oy kNN-LM (Khandelwal et al., 2019) 10.89
Sandwichs — 0.968 Sandwich® 10.83

Experiments

It is also tested on MT tasks (WMT2014 En-de) using encoder-decoder
architecture with additional cross-attention sublayer [Einvolved in decoder.

Y, = cross-attention(Y1, X) + Y,

The concatenation of self-attention and cross-attention Ef8l is used to replace B in
the original sandwich. Using 6 layers in both encoder and decoder, with k varies
from 0 to 5 with sandwich applied to encoder or decoder, it only achieves very
slight promotion in BLEU under specific configurations.

Sandwich Encoder Decoder
Coefficient Sandwich Sandwich
0 (Baseline) 28.74 + 0.15

1 28.71 28.64
2 28.71 28.56
3 28.81 28.67
4 28.48 28.66

5 28.45 28.76

Conclusion

e NAS in traditional NLP tasks usually cannot obtain as significant promotion as
CV, as most popular models (e.g. transformers, pre-trained models) are
already carefully designed.

e Gradient-based optimization for NAS is becoming a main direction instead of
Evolution Algorithm or Reinforcement Learning due to the much less
computing resource requirement (considering the 1M GPU hours in Evolved
Transformer)

e Trying to simplifying or redesign the NAS problem for current NLP models is a
possible direction (e.g. sandwich transformer), but | don’t think fine-grained
NAS on NLP models is a good idea.

e Maybe NAS can be applied to some special setting of NLP tasks, e.g.
few-shot learning, UDA, generalization across different datasets.

Some of our findings

We applied meta-learning to GPT2 model under the few-shot config in
PersonaChat, but find no promotion compared to simply fine-tuning.
It has the similar optimization objective as DARTS

ngn Z L'D;;?hd (fo;)i) — m&in Lval(w* (a), Oé)
Pr i Vs.
Z [/D;?hd (ff?—aveﬁpu_-um(fe)) ~ Eval ('LU - ngﬁtrain (’U), O{), a)
Dp'- '\‘.(7(,-0,,, w

So will it take effect by bring @ so combine meta-learning with DARTS?

| found that zero-out the output of some specific neurons of BERT can
enhance its generalization performance in QA tasks acrossing different
question intents under some conditions (it can be regarded as a fine-grained
version of NAS)

Thank you!

