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Before Talking about The Story

Some high-level backgrounds

* There are two ways to interpret NLP models
* Understand the decision-making process of the model.

* Understand the linguistic properties captured by the model.



What is probing

 Probing task is a
classification task based
on a dataset that can
reveal some linguistic
properties and a probing
model

* The accuracy of the
probing task can be
regarded as a reflection
of the linguistic
properties captured by
the representations

The Beginning of This Story
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One Concern about Probing

But when a probe achieves high accuracy on a linguistic task using a
representation, can we conclude that the representation encodes
linguistic structure, or has the probe just learned the task?

—Percy Liang



Fix The Concern!
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Again, What is probing

From the viewpoint of information theory

[(T;R) = H(T) — H(T' | R)



How to Understand Probing

From the viewpoint of information theory
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How to Understand Probing

Bigger probes are better

[(T;R) :=H(T)—H(T | R)
(T) o HC]@ (T ‘ R)



How to Understand Probing

Results from the original paper

# Tokens bert fastText onehot

Language Train Test #POS H(T) H(T|R) H(T |c(R)) G(T,R,c) H(T | c(R)) G(T,R,c)

Basque 71,483 23,959 16 3.18  0.31 0.30 -0.01 (0.3%) 0.82 0.51 (16.0%)
Czech 1,164,956 172,420 18 3.33  0.08 0.14 0.06 (1.8%) 0.36 0.28 (08.4%)
English 177,583 22,044 17 3.62  0.21 0.39 0.18 (5.0%) 0.64 0.43 (11.9%)
Finnish 138,695 18,263 16 3.16  0.24 0.20 -0.04 (1.3%) 0.86 0.62 (19.6%)
Tamil 5,460 1,656 14 3.21  0.58 0.69 0.11 (3.4%) 1.65 1.05 (32.7%)
Turkish 36,562 9,567 15 3.02  0.33 0.27 -0.09 (3.0%) 0.86 0.50 (16.6%)

Table 1: Amount of information shared by BERT, fastText or onehot embeddings and a POS tagging task. When put
into context, multilingual BERT does not tell us much more about syntax than trivial baselines. H('I') is estimated
with a plug-in estimator from same treebanks we use to train the POS labelers.



The Efforts Paid By Probing Models

Use Minimum Description Length as our tool

Probe: Standard —  Description Length

Measure: fingl N finql how “hqrd” it. IS
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Figure 1: Illlustration of the idea behind MDL probes.



The Efforts Paid By Probing Models

Use Minimum Description Length as our tool

A communicate game between Alice and Bob
* Alice knows all (x, y) pairs from dataset D
 Bob just knows x from D
* Alice want to communicate y to Bob

* Jransmission: Data and Model

* The bits they need is the efforts of the probing model need to be paid



The Efforts Paid By Probing Models

Use Minimum Description Length as our tool
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The Efforts Paid By Probing Models

Use Minimum Description Length as our tool
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The Efforts Paid By Probing Models

Results

Accuracy Description Length
variational code online code
codelength compression codelength compression

MLP-2, h=1000
LAYERO 93.7/96.3 163/267 31.32/19.09 173/302 29.5/16.87
LAYER1 97.5/919 85/470 59.76/10.85 96/515 53.06/9.89
LAYER 2 973/894 103/612 49.67/8.33 1157717 44.3/7.11

Table 2: Experimental results; shown in pairs: linguistic task / control task. Codelength 1s measured in kbits
(variational codelength 1s given 1n equation (3), online — in equation (4)). Accuracy 1s shown for the standard
probe as in Hewitt and Liang (2019); for the variational probe, scores are similar (see Table 3).



The Efforts Paid By Probing Models

Results of model codelength and data codelength
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