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A Simple Question

• What is the relation between Pre-Training and Transfer Learning ?



A Simple Question

• What is the relation between Pre-Training and Transfer Learning ?

• Pre-Training ⊆ Transfer Learning

• Transfer Learning has a wider scope. Details please refer to A Survey on 
Transfer Learning

• In NLP, Pre-Training is the highlight of Transfer Learning

• Word2Vec

• BERT
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Background

• NeurIPS 2018 Conversational Intelligence Challenge 2 (ConvAI2)
• http://convai.io/

2. AAAI 2019

3. ACL 2019



Background

• SMP 2019 The 3rd Evaluation of Chinese Human-Computer 
Dialogue Technology（SMP-ECDT 3）

4. AAAI 2020
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1. Domain Adaptation-Information

• Title: Neural Personalized Response Generation as Domain Adaptation

• Authors: Wei-Nan Zhang, Ting Liu, Yifa Wang, Qingfu Zhu

• Affiliation: Harbin Institute of Technology



1. Domain Adaptation-Details

• Goal: To generate personalized dialogues based on Seq2Seq Model

• No explicit persona texts are given



1. Domain Adaptation-Details

• Models:  a two-phase approach, initialization and adaptation



1. Domain Adaptation-Details

• Dataset Collection

• General Data

• 1 million one-to-one post-response pairs from several Chinese online forums, such as 
Weibo and Douban.

• Personalized Data: 

• 5 volunteers, each shared 2,000 messages of their chatting history. 

• Then retrieve posts, which have similar responses to the personalized messages, from 
general data. The post-message pairs are the personalized data.



1. Domain Adaptation-Details

• Experiment Results – imitation rate



1. Domain Adaptation-Details

• Experiment Results – Human Evaluation



1. Domain Adaptation-Details

• Experiment Results – Human Evaluation



1. Domain Adaptation-Details

• Experiment Results – Word Statistics



1. Domain Adaptation-Details

• Experiment Results – Some Cases



1. Domain Adaptation-Summaries

• This work was initialized at the end of 2016. At that time, transfer 
learning and pre-training in dialogues are not as ubiquitous as today.

• This work is suitable as a baseline: 

• It is a published paper

• Easy to implement

• Easy to outperform
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2. TransferTransfo-Information

• Title: TransferTransfo: A Transfer Learning Approach for Neural 
Network Based Conversational Agents

• Authors: Thomas Wolf, Victor Sanh, Julien Chaumond and 
Clement Delangue

• Affiliation: HuggingFace Inc.



2. TransferTransfo-Motivation

• The well-known challenges in open-domain dialogues:

• The lack of a consistent personality

• The absence of a long-term memory 

• A tendency to produce consensual and generic responses



2. TransferTransfo-Details

• Goals

• To generate persona-based responses ( a generative model )

• To select 1 response from 20 candidates ( a retrieval model )

• Metrics

• Perplexity, F1, Hits@1

• Real-time human interactive evaluation



2. TransferTransfo-Details

• Model

• TransferTransfo → Transfer Transformer

• A 12-layer decoder-only transformer with masked self-attention heads 
(768 dimensional states and 12 attention heads)

• It is in the same architecture to the openAI GPT. But the GPT 2018 did not 
prove its effectiveness in generation tasks ( only verified on NLU tasks ).



2. TransferTransfo-Details

• Dataset
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• Dataset



2. TransferTransfo-Details

• Pre-training Data

• The BooksCorpus dataset (Zhu et al., 2015), containing over 7,000 

unpublished books (about 800M words) from a variety of genres.  

• Using the document-level corpus rather than a shuffled sentence-level 

corpus.

• Taking advantage of long contiguous sequences and paragraphs and 

learn to condition on long-range information.



2. TransferTransfo-Details

• Input Representation

• input sequence = persona texts + dialogue history

• dialogue history = speak_A_1 + speak_B_1 + speak_A_2 + … 

• reusing the same positional embeddings for each persona texts to 
promote an invariance to persona texts ordering



2. TransferTransfo-Details

• Multi-task learning

• A language model loss (cross-entropy )

• A next-utterance classification loss
Similar to the Next Sentence Prediction 
task in BERT (a parallel work ):

Training a head to distinguish a correct 
next utterance appended to the input 
sequence from a set of randomly sampled 
distractors (in practice between 2 and 6 
randomly  sampled utterances).



2. TransferTransfo-Details

• Fine-tuning details

• batch size of 32, an average of 250 tokens

• 200,000 steps, about 2 epochs on PersonaChat

• Adam with a learning rate of 6.25e-5, β1 = 0.9, β2 = 0.999

• dropout probability of 0.1 on all layers

• 10 hours on four K80 GPUs



2. TransferTransfo-Details

• Results

• Hits@1 of two retrieval models ( on the hidden Test set ):



2. TransferTransfo-Details

• Are these metrics good ? (excerpt from competition summary) 



2. TransferTransfo-Summaries

• This paper presented their work in ConvAI2, and its superior 
performance largely benefits from the pretrained GPT.

• This work is an early attempt in leveraging pre-trained LM for 
dialogue generation. Before BERT ( Oct. 2018 ) and GPT ( Jun. 2018 ),  
few people knew the power of pretrained transformers.

• Although it is a short paper, it has been cited by 38 times since 2019 
and has an impact on later work such as DialogueGPT.
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3. Lost in Conversation-Information

• Title: Large-Scale Transfer Learning for Natural Language 
Generation

• Authors: Sergey Golovanov, Rauf Kurbanov, Sergey Nikolenko et al.

• Affiliation: Neuromation OU, Estonia; Steklov Mathematical 
Institute at St.Petersburg.



3. Lost in Conversation-Details

• Model
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3. Lost in Conversation-Details

• Dataset: PersonaChat

• Pre-Training Dataset

• DailyDialog
• Li Y. et al. DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset

• Reddit comments dataset
• files.pushshift.io/reddit/comments



3. Lost in Conversation-Details

• Training Settings

• batch size: 256
• learning rate: 6.25e-5
• warmup: 16000
• label smoothing: 0.1
• dropout: 0.1

• First stage: one week on Nvidia GTX 1080TI
• Finetuning stage: about two days on Nvidia GTX 1080TI



3. Lost in Conversation-Details

• The Interesting Part of This Paper: Compare two architectures

VS

Decoder-Only Encoder-Decoder



3. Lost in Conversation-Details

• The Interesting Part of This Paper: Compare Two Architectures

• Both architectures reach comparable performances on the automatic metrics



3. Lost in Conversation-Details

• The Interesting Part of This Paper: Compare Two Architectures

Words are labeled to three categories:
1. words that were mentioned in the persona texts;
2. words that were mentioned in the dialog history;
3. words that were mentioned in both

Conclusion:
1. Single-input stays closer to the dialog history
2. Multi-input stays closer to persona texts

Possible Reasons:
Persona texts are not ordered. In Single-input 
model, they are handled sequentially. Older history 
becomes less relevant.



3. Lost in Conversation-Summaries

• This model got the best human evaluation results in ConvAI2 final 
round.

• It is an educated guess that encoder-decoder structure is more 
suitable for dialogue generation tasks.
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4. Pre-training Persona-sparse Generation 

• Title: A Pre-training Based Personalized Dialogue Generation Model 
with Persona-sparse Data

• Authors: Yinhe Zheng, Rongsheng Zhang, Xiaoxi Mao, Minlie Huang

• Affiliation: Tsinghua University; NetEase Inc.; Samsung Research



4. Pre-training Persona-sparse Generation 

• What is “persona-sparse” ?

• Most speakers in daily conversations are not aiming to exhibit their 
personas within limited turns of interactions.

• Data collected from real-world conversations only contain a limited 
amount of dialogues that relate to speakers’ persona.

• In contrast, PersonaChat is a persona-dense dataset. Its collection 
scheme guaranteed to yield dialogues that cover rich persona features.



4. Pre-training Persona-sparse Generation 

• Dataset
• SMP-ECDT 2019 Dataset

• Collected from Chinese social media Weibo

• Weibo post and its replies, together with a 

structured profile of each speaker

• Random test set contains 10K sessions of 

randomly sampled dialogues

• Biased test set provides contexts which 

speakers tend to reveal their personas, selected 

by humans.



4. Pre-training Persona-sparse Generation 

• Pre-training Dataset

• A dataset collected from a set of Chinese novels, which covered a variety 
of genres (including Comedy, Romance, Mystery). 

• The final pre-training corpus contains about 0.5 billion tokens.

• a character-level language model with a vocabulary size of 13,084.



4. Pre-training Persona-sparse Generation 

• Solutions

• a pre-training based method that can utilize persona-sparse data

• an attention routing mechanism to weigh persona features 
dynamically in the decoder



4. Pre-training Persona-sparse Generation 

• Encoding Persona

• Sum of a word embedding, a positional 
embedding and attribute embeddings

• Attribute embedding is obtained by 
utilizing look-up tables

• Interest Tags is computed as the average 
of all the tag embeddings



4. Pre-training Persona-sparse Generation 

• Model



4. Pre-training Persona-sparse Generation 

• Attention Routing

• !"#$%

• !&

• !'

• (

previous decoded words

target profile

dialogue context

the confidence of the 
response is persona related



4. Pre-training Persona-sparse Generation 

• Automatic Results



4. Pre-training Persona-sparse Generation 

• Effect of !

• " controls the persona information

• In the persona-sparse scenario, too 
many persona information could lead to 
the decrease of performance



4. Pre-training Persona-sparse Generation 

• Human Evaluations and Cases

* with scale 0, 1, 2



Conclusion

• Domain adaption
• No explicit persona
• RNN-based model
• 2016-2017

• Pre-training + Finetuning
• With explicit persona
• Transformer-based model
• 2018-2020

SUMMARY
1. Better language model, better 

dialogue generation model
2. Transfer learning in personalized 

dialogue is still under-explored
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