Multi-turn Response Selection

Jimblin Tencent Al Lab, NLP Center

Overview

- Multi-Turn Response Selection for Chatbots with Deep Attention Matching Network (*ACL2018*)
- One Time of Interaction May Not Be Enough: Go Deep with an Interaction-over-Interaction Network for Response Selection in Dialogues (*ACL2019*)
- Constructing Interpretive Spatio-Temporal Features for Multi-Turn Response Selection (*ACL2019*)

Problem Formalization

Context $c = \{u_0, ..., u_{n-1}\}$

Fig from Deep Chit-Chat: Deep: Learning for ChatBots. Wei Wu and Rui Yan. EMNLP 2018

Candidates in red are good without the context!

r

Response candidate

 $Label \quad y \in \{0,1\}$

Problem Formalization

If there are m response candidates, the network need to

data set
$$\mathcal{D} = \{(c, r, y)_Z\}_{Z=1}^N$$
,

Multi-Turn Response Selection for Chatbots with Deep Attention Matching Network

Xiangyang Zhou*, Lu Li*, Daxiang Dong, Yi Liu, Ying Chen, Wayne Xin Zhao, Dianhai Yu and Hua Wu

Baidu Inc., Beijing, China {zhouxiangyang, lilu12, dongdaxiang, liuyi05, chenying04, v_zhaoxin, yudianhai, wu_hua }@baidu.com

Motivation & Contribution

- Existing models only consider the textual relevance, which suffers from matching response that latently depends on previous turns.
- RNN-based network is too costly to use for capturing semantic representations.
- The authors jointly introduce self-attention and cross-attention in one uniform neural matching network.

Methodology

Figure 2: Overview of Deep Attention Matching Network.

Methodology

Figure 3: Attentive Module.

$$Att(\mathcal{Q},\mathcal{K}) = \left[softmax(\frac{\mathcal{Q}[i] \cdot \mathcal{K}^T}{\sqrt{d}})\right]_{i=0}^{n_{\mathcal{Q}}-1} \quad (1)$$

$$\mathcal{V}_{att} = Att(\mathcal{Q}, \mathcal{K}) \cdot \mathcal{V} \in \mathbb{R}^{n_{\mathcal{Q}} \times d} \quad (2)$$

$$\widetilde{\mathbf{U}}_{i}^{l} = \mathbf{AttentiveModule}(\mathbf{U}_{i}^{l}, \mathbf{R}^{l}, \mathbf{R}^{l})$$
(8)

$$\tilde{\mathbf{R}}^{l} = \mathbf{AttentiveModule}(\mathbf{R}^{l}, \mathbf{U}_{i}^{l}, \mathbf{U}_{i}^{l})$$
(9)

$$\mathbf{M}_{cross}^{u_i,r,l} = \{ \widetilde{\mathbf{U}}_i^l[k]^T \cdot \widetilde{\mathbf{R}}^l[t] \}_{n_{u_i} \times n_r}$$
(10)

Experiment

	Ubuntu Corpus				Douban Conversation Corpus					
	$R_2@1$	$R_{10}@1$	$R_{10}@2$	$R_{10}@5$	MAP	MRR	P@1	R ₁₀ @1	$R_{10}@2$	$R_{10}@5$
DualEncoder _{1stm}	0.901	0.638	0.784	0.949	0.485	0.527	0.320	0.187	0.343	0.720
DualEncoder _{bilstm}	0.895	0.630	0.780	0.944	0.479	0.514	0.313	0.184	0.330	0.716
MV-LSTM	0.906	0.653	0.804	0.946	0.498	0.538	0.348	0.202	0.351	0.710
Match-LSTM	0.904	0.653	0.799	0.944	0.500	0.537	0.345	0.202	0.348	0.720
Multiview	0.908	0.662	0.801	0.951	0.505	0.543	0.342	0.202	0.350	0.729
DL2R	0.899	0.626	0.783	0.944	0.488	0.527	0.330	0.193	0.342	0.705
$SMN_{dynamic}$	0.926	0.726	0.847	0.961	0.529	0.569	0.397	0.233	0.396	0.724
DAM	0.938	0.767	0.874	0.969	0.550	0.601	0.427	0.254	0.410	0.757
DAM _{first}	0.927	0.736	0.854	0.962	0.528	0.579	0.400	0.229	0.396	0.741
DAM _{last}	0.932	0.752	0.861	0.965	0.539	0.583	0.408	0.242	0.407	0.748
DAM_{self}	0.931	0.741	0.859	0.964	0.527	0.574	0.382	0.221	0.403	0.750
DAM _{cross}	0.932	0.749	0.863	0.966	0.535	0.585	0.400	0.234	0.411	0.733

Table 1: Experimental results of DAM and other comparison approaches on Ubuntu Corpus V1 and Douban Conversation Corpus.

Conclusion

- Using stacked self-attention to harvest multi-grained semantic representations.
- Utilizing cross-attention to match with dependency information.
- DAM is a fast network which achieves the SOTA result.

One Time of Interaction May Not Be Enough: Go Deep with an Interaction-over-Interaction Network for Response Selection in Dialogues

Chongyang Tao¹, Wei Wu², Can Xu², Wenpeng Hu¹, Dongyan Zhao^{1,3} and Rui Yan^{1,3*} ¹Institute of Computer Science and Technology, Peking University, Beijing, China ²Microsoft Corporation, Beijing, China ³Center for Data Science, Peking University, Beijing, China ^{1,3}{chongyangtao, wenpeng.hu, zhaody, ruiyan}@pku.edu.cn ²{wuwei, caxu}@microsoft.com

one-time interaction not enough

- Existing methods are executed *in a rather shallow manner*.
- Matching between an utterance and a response candidate is determined *only by one step* of interaction on each type or each layer of representations.
- If a model extracts some matching information from utteranceresponse pairs in one step of interaction, then by stacking *multiple interaction blocks*, the matching network can capture *the semantic relationship* between a context and a response candidate in a more comprehensive way.

Motivation & Contribution

- By stacking *multiple interaction blocks*, the matching network can capture the semantic relationship between a context and a response candidate in a more comprehensive way.
- This paper performs matching by stacking multiple interaction blocks, and thus extends the shallow interaction in state-of-the-art methods to a deep form.

Methodology

Figure 1: Architecture of interaction-over-interaction network.

Interaction Block

Interaction Block 1

Self Attention Mechanism $f_{ATT}(\mathbf{Q}, \mathbf{K})$

$$\hat{\mathbf{Q}} = S(\mathbf{Q}, \mathbf{K}) \cdot \mathbf{K},\tag{1}$$

 $S(\mathbf{Q}, \mathbf{K}) = \operatorname{softmax}(f(\mathbf{QW})\mathbf{D}f(\mathbf{KW})^{\top}). \quad (2)$

$$\operatorname{ReLU}(\mathbf{QW}_1 + \mathbf{b}_1)\mathbf{W}_2 + \mathbf{b}_2, \qquad (3)$$

- : Self-attention
- : Interaction Operation
- : Add Operation

Interaction Block

Interaction Block 1

Interaction Operat	ion	$f_{ATT}(\mathbf{Q},\mathbf{R})$	K)
$\hat{\mathbf{U}}^k = f_{\mathrm{ATT}}(\mathbf{U}^{k-1})$	$(,\mathbf{U}^{k-1}),$	(4)	
$\overline{\mathbf{U}}^k = f_{\mathrm{ATT}}(\mathbf{U}^{k-1})$	$,\mathbf{R}^{k-1}),$	(6)	
$ ilde{\mathbf{U}}^k = \mathbf{U}^{k-1} \odot \overline{\mathbf{U}}$	$^{k},$	(8)	
$\mathbf{e}_{u,i}^{k} = \operatorname{ReLU}(\mathbf{w}_{p} \begin{bmatrix} \mathbf{e}_{u}^{k} \\ \hat{\mathbf{e}} \\ \overline{\mathbf{e}} \\ \tilde{\mathbf{e}} \\ \tilde{\mathbf{e}} \end{bmatrix}$	$\begin{bmatrix} x-1\\ u,i\\k\\u,i\\k\\u,i\\k\\u,i \end{bmatrix} + \mathbf{b}_{p}$	$\mathbf{e}_{u,i}^{k-1},$	(10)

Interaction Block

Interaction Block 1

Interaction Operation $f_{ATT}(\mathbf{Q}, \mathbf{K})$

$$\hat{\mathbf{R}}^k = f_{\text{ATT}}(\mathbf{R}^{k-1}, \mathbf{R}^{k-1}).$$
(5)

$$\overline{\mathbf{R}}^{k} = f_{\text{ATT}}(\mathbf{R}^{k-1}, \mathbf{U}^{k-1}).$$
(7)

$$\tilde{\mathbf{R}}^k = \mathbf{R}^{k-1} \odot \overline{\mathbf{R}}^k, \tag{9}$$

$$\mathbf{e}_{r,i}^{k} = \operatorname{ReLU}(\mathbf{w}_{p} \begin{bmatrix} \mathbf{e}_{r,i}^{k-1} \\ \hat{\mathbf{e}}_{r,i}^{k} \\ \overline{\mathbf{e}}_{r,i}^{k} \\ \tilde{\mathbf{e}}_{r,i}^{k} \end{bmatrix} + \mathbf{b}_{p}) + \mathbf{e}_{r,i}^{k-1}, \quad (11)$$

Matching Aggregation

$$\mathbf{M}_{i,1}^{k} = \frac{\mathbf{U}_{i}^{k-1} \cdot (\mathbf{R}^{k-1})^{\top}}{\sqrt{d}},$$
$$\mathbf{M}_{i,2}^{k} = \frac{\hat{\mathbf{U}}_{i}^{k} \cdot (\hat{\mathbf{R}}^{k})^{\top}}{\sqrt{d}},$$
$$(12)$$
$$\mathbf{M}_{i,3}^{k} = \frac{\overline{\mathbf{U}}_{i}^{k} \cdot (\overline{\mathbf{R}}^{k})^{\top}}{\sqrt{d}},$$

$$\mathbf{T}_{i}^{k} = \mathbf{M}_{i,1}^{k} \oplus \mathbf{M}_{i,2}^{k} \oplus \mathbf{M}_{i,3}^{k}, \qquad (13)$$

Experiment

Metrics		Ubuntu Corpus				Douban Corpus				
Models	$R_2@1$	R ₁₀ @1	R ₁₀ @2	R ₁₀ @5	MAP	MRR	P@1	R ₁₀ @1	R ₁₀ @2	R ₁₀ @5
RNN (Lowe et al., 2015)	0.768	0.403	0.547	0.819	0.390	0.422	0.208	0.118	0.223	0.589
CNN (Lowe et al., 2015)	0.848	0.549	0.684	0.896	0.417	0.440	0.226	0.121	0.252	0.647
LSTM (Lowe et al., 2015)	0.901	0.638	0.784	0.949	0.485	0.527	0.320	0.187	0.343	0.720
BiLSTM (Kadlec et al., 2015)	0.895	0.630	0.780	0.944	0.479	0.514	0.313	0.184	0.330	0.716
DL2R (Yan et al., 2016)	0.899	0.626	0.783	0.944	0.488	0.527	0.330	0.193	0.342	0.705
MV-LSTM (Wan et al., 2016)	0.906	0.653	0.804	0.946	0.498	0.538	0.348	0.202	0.351	0.710
Match-LSTM (Wang and Jiang, 2016)	0.904	0.653	0.799	0.944	0.500	0.537	0.345	0.202	0.348	0.720
Multi-View (Zhou et al., 2016)	0.908	0.662	0.801	0.951	0.505	0.543	0.342	0.202	0.350	0.729
SMN (Wu et al., 2017)	0.926	0.726	0.847	0.961	0.529	0.569	0.397	0.233	0.396	0.724
DUA(Zhang et al., 2018b)	-	0.752	0.868	0.962	0.551	0.599	0.421	0.243	0.421	0.780
DAM (Zhou et al., 2018b)	0.938	0.767	0.874	0.969	0.550	0.601	0.427	0.254	0.410	0.757
IoI-global	0.941	0.778	0.879	0.970	0.566	0.608	0.433	0.263	0.436	0.781
IoI-local	0.947	0.796	0.894	0.974	0.573	0.621	0.444	0.269	0.451	0.786

(a) $R_{10}@1$ vs. Average utterance length

(b) $R_{10}@1$ vs. Number of turns

Figure 3: Performance of IoI across contexts with different lengths on the Ubuntu data.

Summary

• Strength

- We present an interaction-over-interaction network (IoI) that lets utterance-response interaction in context-response matching go deep.
- A good example of stacked network using self-attention, cnn and gru. (Like GoogleNet)

• Weakness

• The params of IoI is futher larger than baseline model, so the improvement is uncertain.

Constructing Interpretive Spatio-Temporal Features for Multi-Turn Responses Selection

Junyu Lu[†], Chenbin Zhang[†], Zeying Xie, Guang Ling, Chao Zhou, Zenglin Xu[†] † SMILE Lab, University of Electronic Science and Technology of China, Sichuan, China {cs.junyu, aleczhang13, swpdtz, zacharyling}@gmail.com, tom.chaozhou@foxmail.com, zenglin@gmail.com

Motivation

- In multi-turn dialogues, the next sentence is generally based on what was presented before and tends to match a recent local context.
- This is because the topic in a conversation may change over time, and the effective matching between the dialogue may only appear in a local time period.
- This phenomena generally appear in video processing. Therefore, Each turn of dialogue can be regarded as a frame of a video.

Contribution

- The first work that representations of the dialogue context and candidate answers are learned through from dual encoders, and deep 3D ConvNets.
- The Spatio-Temporal Matching block (STM) models local semantic relation between each turn of dialog and candidates by soft-attention mechanism.

Methodology

Spatio-Temporal Matching Network

Figure 2: The proposed spatio-temporal matching framework for response selection.

Spatio-Temporal Matching block

$$\mathbf{M}_{\mu_m,\gamma_n}^l = \frac{\left(\mu_m^l\right)^T \gamma_n^l}{\sqrt{d}},\tag{1}$$

$$\mathbf{Q}^{(\mathbf{n})} = \{Q_{i,j,k}^{(n)}\}_{m \times n_{\mu} \times n_{\gamma}},\tag{2}$$

$$Q_{i,j,k}^{(n)} = \{M_{\mu_i,\gamma_n}^l[j,k]\}_{l=0}^L,\tag{3}$$

$$s_n = \mathbf{W} f_{conv}(\mathbf{Q}^{(n)}) + \mathbf{b}, \qquad (4)$$

Experiment

Model	$R_{100}@1$	$R_{100}@10$	MRR
Baseline	0.083	0.359	-
DAM	0.347	0.663	0.356
DAM+Fine-tune	0.364	0.664	0.443
DME	0.383	0.725	0.498
DME-SMN	0.455	0.761	0.558
STM(Transform)	0.490	0.764	0.588
STM(GRU)	0.503	0.783	0.597
STM(Ensemble)	0.521	0.797	0.616*
STM(BERT)	0.548^{*}	0.827*	0.614

Model	Advisi	ng 1	Advising 2		
	R ₁₀₀ @10	MRR	R ₁₀₀ @10	MRR	
Baseline	0.296	-	-	-	
DAM	0.603	0.312	0.374	0.174	
DAM+Fine-tune	0.622	0.333	0.416	0.192	
DME	0.420	0.215	0.304	0.142	
DME-SMN	0.570	0.335	0.388	0.183	
STM(Transform)	0.590	0.320	0.404	0.182	
STM(GRU)	0.654	0.380	0.466	0.220	
STM(Ensemble)	0.662*	0.385*	0.502*	0.232*	

Table 1: Experiment Result on the Ubuntu Corpus.

Table 2: Experiment Results on the Advising Dataset.

Summary

• Strength

- The model applies spatio-temporal matching block to measure the matching degree of a pair of context and candidate.
- 3D CNN is used to model the multi-turn at the first time.

• Weakness

• A simple attempt of 3D CNN, the result isn't good enough.

END!