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Overview

* Multi-Turn Response Selection for Chatbots with Deep Attention
Matching Network (ACL2018)

* One Time of Interaction May Not Be Enough: Go Deep with an
Interaction-over-Interaction Network for Response Selection In
Dialogues (ACL2019)

* Constructing Interpretive Spatio-Temporal Features for Multi-
Turn Response Selection (ACL2019)



Problem Formalization

Fig from Deep Chit-Chat: Deep: Learning for ChatBots. Wei Wu and Rui Yan. EMNLP 2018
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Problem Formalization
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Motivation & Contribution

* Existing models only consider the textual relevance, which suffers
from matching response that latently depends on previous turns.

* RNN-based network I1s too costly to use for capturing semantic
representations.

* The authors jointly introduce self-attention and cross-attention In
one uniform neural matching network.
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Figure 2: Overview of Deep Attention Matching Network.



Methodology
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Experiment

Ubuntu Corpus Douban Conversation Corpus
Rgﬂl R[[]@l R[[]ﬂg R][Jﬂﬁ Mﬂp MRI{ P{_&} l Rl[]':”-!]. 121[]':':1!2L Rl[]':”-!ﬁ
DualEncoder; ., 0.901 0.638 0.784 0.949 | 0485 | 0.527 | 0320 | 0.187 (0.343 0.720
DualEncoderpitseen | 0.895 0.630 0.780 0.944 | 0479 | 0514 | 0313 | 0.184 (0.330 0.716
MV-LSTM 0.906 0.653 0.804 0946 | 0498 | 0.538 | 0348 | 0.202 (0.351 0.710
Match-LSTM 0.904 0.653 0.799 0.944 | 0500 | 0.537 | 0345 | 0.202 (0.348 0.720
Multiview 0.908 0.662 0.801 0.951 0.505 | 0543 | 0342 | 0.202 (0.350 (0.729
DL2R (.899 0.626 0.783 0.944 | 0488 | 0.527 | 0330 | 0.193 (0.342 0.705
SMNaynamie 0.926 0.726 0.847 0.961 0.529 | 0.569 | 0.397 | 0.233 (0.396 0.724
DAM 0.938 0.767 0.874 0.969 | 0.550 | 0.601 | 0.427 | 0.254 0.410 0.757
DAM fiy st 0.927 0.736 0.854 0.962 | 0.528 | 0.579 | 0400 | 0.229 (0.396 0.741
DAM ., .932 0.752 0.861 0.965 | 0539 | 0583 | 0408 | 0.242 0.407 0.748
DAM .o ¢ 0.931 0.741 0.859 0.964 | 0.527 | 0.574 | 0382 | 0.221] (0.403 0.750
DAM 055 0.932 0.749 0.863 0.966 | 0.535 | 0.585 | 0400 | 0.234 0.411 (0.733

Table 1: Experimental results of DAM and other comparison approaches on Ubuntu Corpus V1 and
Douban Conversation Corpus.



Conclusion

* Using stacked self-attention to harvest multi-grained semantic
representations.

* Utilizing cross-attention to match with dependency information.

* DAM Is a fast network which achieves the SOTA result.
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one-time Interaction not enougn

* Existing methods are executed /n a rather shallow manner

* Matching between an utterance and a response candidate Is
determined only by one step of interaction on each type or each
layer of representations.

* |t a model extracts some matching information from utterance-
response pairs in one step of interaction, then by stacking
multiple interaction blocks , the matching network can capture
the semantic relationship between a context and a response
candidate in a more comprehensive way.



Motivation & Contribution

* By stacking multiole interaction blocks , the matching network can
capture the semantic relationship between a context and a
response candidate iIn a more comprehensive way.

* This paper performs matching by stacking multiple interaction
blocks, and thus extends the shallow interaction in state-of-the-
art methods to a deep form.



Methodology

Response B Interaction Block 1 Interaction Block 2 Interaction Block L
'
¥/ b 4
» > » 7/ > >

o 7T fl > W

ot

A

5

b 4
Il Y
AL

¥

3
il
T

L
W
WL

Utterance-1

T.1

! i\
1
| . 'h.)r;\ T F\l T in'
TALS L7 L

f!

- ;_-"'\ e [y T /!

by 1 1/
I

i
. d ¥ d v
Initial Representation i |I { I |
| Vnr | Vnz [ '.fn'L
2 L
. : Self-attention o' \t Ts Tn j
@ : Interaction Operation

+ Add Operati
&P peration g(cr)

Figure 1: Architecture of interaction-over-interaction network.



Interaction Block

Self Attention Mechanism far7(Q.K)
Interaction Block 1 Q- 5(Q.K) K, (1)

S(Q.K) = softmax(f(QW)Df(KW)'). (2)

ReLU(QW, + by)W, + by, (3)

. : Self-attention
@ : Interaction Operation

& : Add Operation




Interaction Block

Interaction Block 1

Utterance

Interaction Operation

fATT(Qa K)

U* = farr(UFL, UMY, (4)
_k o o
U = farr(UFL RFY), (6)
Uk = yk-l @ﬁkj (8)
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Interaction Operation farr(Q, K)

Interaction Block

R* = farr(R* 1 RF ). (5)
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Matching Aggregation
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Experiment

Metrics Ubuntu Corpus Douban Corpus
Models Ry@1 | Rjg@1 | R1g@2 | Rjp@5 | MAP | MRR | P@1 | Rjy@1 | Rjp@2 | Rip@5
RNN (Lowe et al., 2015) 0.768 | 0.403 | 0547 | 0819 | 0390 | 0.422 | 0.208 | 0.118 | 0.223 | 0.589
CNN (Lowe et al., 2015) 0.848 | 0.549 | 0.684 | 0.896 | 0417 | 0.440 | 0.226 | 0.121 0.252 | 0.647
LSTM (Lowe et al., 2015) 0901 | 0.638 | 0.784 | 0.949 | 0.485 | 0.527 | 0.320 | 0.187 | 0343 | 0.720
BILSTM (Kadlec et al., 2015) 0.895 | 0.630 | 0.780 | 0944 | 0479 | 0514 | 0313 | 0.184 | 0.330 | 0.716
DL2R (Yan et al., 2016) 0.899 | 0.626 | 0.783 | 0944 | 0.488 | 0.527 | 0.330 | 0.193 | 0.342 | 0.705
MV-LSTM (Wan et al., 2016) 0906 | 0.653 | 0.804 | 0946 | 0.498 | 0.538 | 0.348 | 0.202 | 0.351 0.710
Match-LSTM (Wang and Jiang, 2016) | 0.904 | 0.653 | 0.799 | 0.944 | 0.500 | 0.537 | 0.345 | 0.202 | 0.348 | 0.720
Multi-View (Zhou et al., 2016) 0.908 | 0.662 | 0.801 0.951 | 0.505 | 0.543 | 0.342 | 0.202 | 0350 | 0.729
SMN (Wu et al., 2017) 0926 | 0.726 | 0.847 | 0961 | 0.529 | 0.569 | 0.397 | 0.233 | 0396 | 0.724
DUA(Zhang et al., 2018b) - 0.752 | 0.868 | 0.962 | 0.551 | 0.599 | 0421 | 0.243 | 0.421 0.780
DAM (Zhou et al., 2018b) 0938 | 0.767 | 0.874 | 0.969 | 0.550 | 0.601 | 0.427 | 0.254 | 0.410 | 0.757
lol-global 0.941 | 0.778 | 0.879 | 0970 | 0.566 | 0.608 | 0.433 | 0.263 | 0.436 | 0.781
lol-local 0.947 | 0.796 | 0.894 | 0.974 | 0.573 | 0.621 | 0.444 | 0.269 | 0.451 0.786
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Figure 3: Performance of lol across contexts with different lengths on the Ubuntu data.



summary

* Strength

* We present an interaction-over-interaction network (lol) that lets
utterance-response interaction in context-response matching go deep.

* A good example of stacked network using self-attention, cnn and gru.
(Like GoogleNet)

e Weakness

* The params of lol Is futher larger than baseline model, so the
Improvement is uncertain.
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Motivation

* In multi-turn dialogues, the next sentence I1s generally based on
what was presented before and tends to match a recent local
context.

* This Is because the topic in a conversation may change over time,
and the effective matching between the dialogue may only
appear In a local time period.

* This phenomena generally appear in video processing. Therefore,
Each turn of dialogue can be regarded as a frame of a video.



Contribution

* The first work that representations of the dialogue context and
candidate answers are learned through from dual encoders, and
deep 3D ConvNets.

* The Spatio-Temporal Matching block (STM) models local
semantic relation between each turn of dialog and candidates by
soft-attention mechanism.



Methodology
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Figure 2: The proposed spatio-temporal matching framework for response selection.



Spatio-Temporal Matching block

Figure 3: A close-up of the matching block
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Experiment

Model Rion@1 Rioo@10 MRR Model Advising | Advising 2
Baseline 0.083 0.359 . Ri00@10  MRR  Ripo@10 MRR
DAM 0.347 0.663 0.356 Baseline 0.206 ] ] ]
DAM+Fine-tune 0.364 0).664 0.443 DAM 0.603 0312 0.374 0.174
DME 0.383 0.725 0.498 DAM-+Fine-tune  0.622 0333 0416 0.192
DME-SMN 0455  0.76l 0.558 DME 0.420 0215  0.304 0.142
STM(Transform) 0.490  0.764 0.588 DME-SMN — 0.570 0335  0.383 0.183
STM(GRU) 0.503 0.783 0.597 STM(Transform) 0.590 0.320  0.404 0.182
STM(Ensemble) 0.521 0.797 0.616" STM(GRU) 0.654 0.380  0.466 0.220
STM(BERT) 0.548  0.8277 0.614 STM(Ensemble) 0.662* 0.385°  0.502" 0.232"

Table 1: Experiment Result on the Ubuntu Corpus.  Table 2: Experiment Results on the Advising Dataset.



summary

* Strength

* The model applies spatio-temporal matching block to measure the
matching degree of a pair of context and candidate.

3D CNN Is used to model the multi-turn at the first time.

* Weakness
* A simple attempt of 3D CNN, the result isn't good enough.



END!



