

Emotional Dialogue

Qintong Li^{1,2}

1. Shandong University

2. Tencent AI Lab, NLP Center

Overview

- Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory AAAI18 Tsinghua University
- MOJITALK: Generating Emotional Responses at Scale ACL18 Tsinghua University
- An Affect-Rich Neural Conversational Model with Biased Attention and Weighted Cross-Entropy Loss AAAI19 NTU

Why emphasize **Emotion**?

Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory

Three challenges

- 1. Emotion-labeled dataset
- 2. Balance gramma and emotion
- 3. How to embed emotion information?

Solutions

- 1. Pre-train classifier to annotate dataset
- 2. Emotion category embedding
- 3. Internal emotion state
- 4. External emotion memory

User: Worst day ever. I arrived late because of the traffic. Basic Seq2Seq: You were late. ECM (*Like*): I am always here to support you. ECM (*Happy*): Keep smiling! Things will get better. ECM (Sad): It's depressing. ECM (*Disgust*): Sometimes life just sucks. ECM (*Angry*): The traffic is too bad!

S2S-decoder:
$$s_t = \mathbf{GRU}(s_{t-1}, [c_t; e(y_{t-1}); v_e]).$$

Figure 2: Data flow of the decoder with an internal memory. The internal memory $M_{e,t}^{I}$ is read with the read gate g_{t}^{r} by an amount $M_{r,t}^{I}$ to update the decoder's state, and the memory is updated to $M_{e,t+1}^{I}$ with the write gate g_{t}^{w} .

$$g_{t}^{r} = \operatorname{sigmoid}(\mathbf{W}_{g}^{r}[e(y_{t-1}); s_{t-1}; c_{t}]),$$

$$g_{t}^{w} = \operatorname{sigmoid}(\mathbf{W}_{g}^{w} s_{t}).$$

$$M_{r,t}^{I} = g_{t}^{r} \otimes M_{e,t}^{I},$$

$$M_{e,t+1}^{I} = g_{t}^{w} \otimes M_{e,t}^{I},$$

$$s_{t} = \operatorname{GRU}(s_{t-1}, [c_{t}; e(y_{t-1}); M_{r,t}^{I}]).$$

$$(y_{t} \sim o_{t}) = P(y_{t} \mid y_{1}, y_{2}, \cdots, y_{t-1}, c_{t}),$$

$$(4)$$

Figure 3: Data flow of the decoder with an external memory. The final decoding probability is weighted between the emotion softmax and the generic softmax, where the weight is computed by the type selector.

$$\alpha_{t} = \operatorname{sigmoid}(\mathbf{v}_{u}^{\top} s_{t}), \quad (11)$$

$$P_{g}(y_{t} = w_{g}) = \operatorname{softmax}(\mathbf{W}_{g}^{o} s_{t}), \quad (12)$$

$$P_{e}(y_{t} = w_{e}) = \operatorname{softmax}(\mathbf{W}_{e}^{o} s_{t}), \quad (13)$$

$$y_{t} \sim o_{t} = P(y_{t}) = \begin{bmatrix} (1 - \alpha_{t})P_{g}(y_{t} = w_{g}) \\ \alpha_{t}P_{e}(y_{t} = w_{e}) \end{bmatrix}, \quad (14)$$
Loss function:
$$L(\theta) = -\sum_{t=1}^{m} p_{t}\log(o_{t}) - \sum_{t=1}^{m} q_{t}\log(\alpha_{t}) + \|M_{e,m}^{I}\|,$$
External Internal

Dataset:

NLPCC emotion classification dataset -> classifier Classifier -> STC conversation dataset 6 emotion categories:

Angry, Disgust, Happy, Like, Sad, and Other.

Method	Accuracy
Lexicon-based	0.432
RNN	0.564
LSTM	0.594
Bi-LSTM	0.623

Table 2: Classification accuracy on the NLPCC dataset.

	Posts	21	7,905
		Angry	234,635
	Responses	Disgust	689,295
Training		Нарру	306,364
		Like	1,226,954
		Sad	537,028
		Other	1,365,371
Validation	Posts	1,000	
Test	Posts	1,000	

Table 3: Statistics of the *ESTC Dataset*.

Noise and Classification error

	content	emotion
Method	Perplexity	Accuracy
Seq2Seq	68.0	0.179
Emb	62.5	0.724
ECM	65.9	0.773
w/o Emb	66.1	0.753
w/o IMem	66.7	0.749
w/o EMem	61.8	0.731

Table 4: Objective evaluation with perplexity and accuracy.

Method	Ove	erall	Li	ike	S	ad	Dis	gust	An	gry	Haj	рру
Methou	Cont.	Emot.										
Seq2Seq	1.255	0.152	1.308	0.337	1.270	0.077	1.285	0.038	1.223	0.052	1.223	0.257
Emb	1.256	0.363	1.348	0.663	1.337	0.228	1.272	0.157	1.035	0.162	1.418	0.607
ECM	1.299	0.424	1.460	0.697	1.352	0.313	1.233	0.193	0.98	0.217	1.428	0.700

Table 6: Manual evaluation of the generated responses in terms of Content (Cont.) and Emotion (Emot.).

Method (%)	2-1	1-1	0-1	2-0	1-0	0-0
Seq2Seq	9.0	5.1	1.1	37.6	28.0	19.2
Emb	22.8	9.3	4.3	27.1	19.1	17.4
ECM	27.2	10.8	4.4	24.2	15.5	17.9

Table 5: The percentage of responses in manual evaluation with the score of *Content-Emotion*. For instance, 2-1 means content score is 2 and emotion score is 1.

Pref. (%)	Seq2Seq	Emb	ECM
Seq2Seq	-	38.8	38.6
Emb	60.2	-	43.1
ECM	61.4	56.9	-

Table 7: Pairwise preference of the three systems.

Post	Model		Response(Original)	Response(Translated)
	Sec	q2Seq	承诺,就是一个骗子说给一个傻子听的。	A promise is what a cheater says to a fool.
之;世 当日 人前乙治丛		Like	承诺是一个专一的傻子	Promise is a single-minded fool
一个傻子听的。 一个傻子听的。		Нарру	我就是一个 <mark>开心</mark> 的傻子	I'm just a happy fool
A promise is what a cheater	ECM	Sad	我就是一个 <mark>悲伤</mark> 的傻子	I am a <mark>sad</mark> fool
says to a 1001.		Disgust	一个骗子说给一个傻子听	A cheater says to a fool
		Angry	不管你信不信,反正我信了!	Whatever you believe or not, I trust in it!
	Seq2Seq		知道真相的我眼泪掉下来。	After knowing the truth, I burst into tears.
		Like	太 可爱 了,太 可爱 了!	Too lovely, it's too lovely.
知道真相的我眼泪笑下来 Knowing the truth Llaughed		Happy	笑得我眼泪都出来了。	I can't help laugh myself to tears.
myself to tears	ECM	Sad	知道真相的我 <mark>眼泪</mark> 掉下来。	After knowing the truth, I burst into tears.
	(Disgust	这是真的还是假的?	Is this true?
		Angry	什么意思?没看懂。	What do you mean? I don't understand.

Figure 4: Sample responses generated by Seq2Seq and ECM (original Chinese and English translation, the colored words are the emotion words corresponding to the given emotion category). The corresponding posts did not appear in the training set.

Figure 5: Visualization of emotion interaction.

Analysis of Emotion Interaction and Case Study

- a darker color occurs more frequently than a lighter color
- Like Happy or Like
- Different types exist
- Other has much more data

Summary

- Strength
- 1. The first work that addresses the emotion factor in large-scale conversation generation.
- Weakness
- 1. Category is relatively abstractive
- 2. Produce responses according to explicit user-input emotions
- 3. Not consider emotions in input sentences when generating emotional responses (emotion interactions)

MOJITALK: Generating Emotional Responses at Scale

Xianda Zhou

Dept. of Computer Science and Technology Department of Computer Science Tsinghua University Beijing, 100084 China zhou-xd13@mails.tsinghua.edu.cn william@cs.ucsb.edu

Two challenges

- 1. the lack of large-scale, manually labeled emotional text datasets
- 2. coarse-grained classification labels make it difficult to capture the nuances of human emotion
- 3. control the target emotion labels

Solution

- 1. naturally-occurring emoji-rich Twitter data to construct a dataset using Twitter conversations with emojis in the response.
- 2. experiment with several extensions to the CVAE model

William Yang Wang

University of California, Santa Barbara Santa Barbara, CA 93106 USA

Figure 1: An example Twitter conversation with emoji in the response (top). We collected a large amount of these conversations, and trained a reinforced conditional variational autoencoder model to automatically generate abstractive emotional responses given any emoji.

Dataset

Not all emojis are used to express emotion and frequency of emojis are unevenly distributed.

Crawl data

- Crawl conversation pairs consisting of an original post and a response on Twitter
- The response to a conversation must include at least one of the 64 emoji labels
- only English tweets without multimedia contents (such as URL, image or video) are allowed

Emoji Labelling

- · use the emoji with most occurrences inside the response
- with same occurrences, choose the least frequent one across the whole corpus

596,959/32,600/32,600 conversation pairs for train /validation/test set

Table 1: All 64 emoji labels, and number of conversations labeled by each emoji.

Figure 3: From bottom to top is a forward pass of data during training. Left: the base model encodes the original tweets in v_o , and generates responses by decoding from the concatenation of v_o and the embedded emoji, v_e . Right: In the <u>CVAE model</u>, all additional components (outlined in gray) can be added incrementally to the base model. A separate encoder encodes the responses in x. Recognition network inputs x and produces the latent variable z by reparameterization trick. During training, The latent variable z is concatenated with v_o and v_e and fed to the decoder.

CVAE is trained by <u>maximizing a variational lower bound</u> on the conditional likelihood of x given c

$$p(x|c) = \int p(x|z,c)p(z|c)dz$$

The lower bound to logp(x|c):

$$-\mathcal{L}(\theta_D, \theta_P, \theta_R; x, c) = \mathrm{KL}(q_R(z|x, c)||p_P(z|c)) -\mathbb{E}_{q_R(z|x, c)}(\log p_D(x|z, c))$$

Reparameterization trick to sample latent variables

- During training, z by the recognition network is passed to the decoder and trained to approximate z' by the prior network
- b. During testing, the target response is absent, and z' by the prior network is passed to the decoder

Control the emotion of our generation more explicitly ---- RL+CVAE

- 1. Train an emoji classifier to produce reward for the policy training
- 2. Get the generated response x' by passing x and c through the CVAE
- 3. x' to classifier and get the probability of the emoji label as reward R

$$\mathcal{J}(\theta) = \mathbb{E}_{p(x|c)}(R_{\theta}(x,c)) \qquad \nabla \mathcal{J}(\theta) = (R-r)\nabla \sum_{t}^{|x|} \log p(x_t|c, x_{1:t-1})$$

Modified policy gradient

- 1. Adjust rewards according to the position of the emoji label
- 2. Train Reinforced CVAE by a hybrid objective of REINFORCE and variational lower bound objective

$$\nabla \mathcal{J}'(\theta) = \alpha(R-r) \nabla \sum_{t}^{|x|} \log p(x_t|c, x_{1:t-1})$$

$$\min_{\theta} \mathcal{L}'' = \mathcal{L}' - \lambda \mathcal{J}'$$

General

		Emoji A	ccuracy
Model	Perplexity	Top1	Top5
	Dev	velopment	\bigcirc
Base	127.0	34.2%	57.6%
CVAE	37.1	40.7%	75.3%
Reinforced CVAE	38.1	42.2%	76.9%
		Test	
Base	130.6	33.9%	58.1%
CVAE	36.9	41.4%	75.1%
Reinforced CVAE	38.3	42.1%	77.3%

Table 2: Generation perplexity and emoji accuracy of the three models.

Generation Diversity

Model	Unigram	Bi-	Tri-
Base	0.0061	0.0199	0.0362
CVAE	0.0191	0.131	0.365
Reinforced CVAE	0.0160	0.118	0.337
Target responses	0.0353	0.370	0.757

Table 3: <u>Type-token ratios</u> of the generation by the three models. Scores of tokenized humangenerated target responses are given for reference.

Controllability of Emotions

Human Evaluation

Setting	Model v. Base	Win	Lose	Tie
reply	CVAE	42.4%	43.0%	14.6%
reply	Reinforced CVAE	40.6%	39.6%	19.8%
emoji	CVAE	48.4%	26.2%	25.4%
emoji	Reinforced CVAE	50.0%	19.6%	30.4%

decide which one better reply the original tweet

pick one better fits given emoji

Table 4: Results of human evaluation. Tests are conducted pairwise between CVAE models and the base model.

Content sorry guys, was gunna stream tonight but i 'm still feeling like crap and my voice disappeared. i will make it up to you 1 13 Target Emotion ÷ i 'm sorry you 're going to be i 'm sorry for your loss i 'm sorry you 're going to be Base missed it able to get it CVAE hope you are okay hun ! hi jason, i'll be praying for you im sorry u better suck u off Reinforced hope you 're feeling it hope you had a speedy recovery dude i 'm so sorry for that i wanna hear it and i 'm sorry i CVAE man! hope you feel better soon , please get well soon can 't go to canada with you but i wanna be away from canada add me in there my bro 🧥 Content 6 5 Target Emotion i 'm not sure you 'll be there i'm here for you i'm not ready for you Base CVAE you will be fine bro, i'll be in you know, you need to tell me i can 't wait 😔 in your hometown ! the gym for you Reinforced you might have to get me hip good luck bro ! this is about to i 'm still undecided and i 'm still CVAE hop off. be healthy waiting

Summary

- Strength
- 1. The first work that uses emoji-rich Twitter data for emotional response generation. (fine-grained emoji label)
- Weakness
- 1. Produce responses according to explicit user-input emotions
- 2. Not consider emotions in input sentences when generating emotional responses (emotion interactions)
- 3. Multi-turn
- 4. Exp is enough?

An Affect-Rich Neural Conversational Model with Biased Attention and Weighted Cross-Entropy Loss

Peixiang Zhong,^{1,2} **Di Wang**,¹ **Chunyan Miao**^{1,2,3}

¹Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly ²Alibaba-NTU Singapore Joint Research Institute ³School of Computer Science and Engineering Nanyang Technological University, Singapore peixiang001@e.ntu.edu.sg, {wangdi, ascymiao}@ntu.edu.sg

Two challenges

- 1. Capture the emotion of a sentence. <u>negators and intensifiers</u> often change its polarity and strength
- 2. Embed emotions naturally in responses with correct grammar and semantics

Solution

- 1. <u>A novel biased attention mechanism</u> that explicitly considers negators and intensifiers in attention computation
- 2. train Seq2Seq model with <u>a weighted cross-entropy loss</u> that encourages the generation of affectrich words without degrading language fluency

Dimensions	Values	Interpretations		
Valence	3 - 7	pleasant - unpleasant		
Arousal	3 - 7	low intensity - high intensity		
Dominance	3 - 7	submissive - dominant		
Table 1: Interpretations of clipped VAD embeddings.				

Nice: V 6.95; A 3.53; D 6.47

 $\mu(x_t) = \begin{cases} 1 & \text{term frequency} & \text{ui} \\ a/(a+p(x_t)) & \text{gi} \\ \frac{\log(1/(p(x_t)+\epsilon))}{\sum_{t=1}^{t=T}\log(1/(p(x_t)+\epsilon))} & \text{li} \end{cases}$

$$e_{t't} = \mathbf{h}_t^T \mathbf{s}_{t'} + \mathbf{\eta}_t,$$

affective attention coefficient term importance

$$\eta_t = \gamma ||\mu(x_t)(1+\beta) \otimes \overline{VAD}(x_t)||_2^2,$$

$$\beta = \tanh(\mathbf{W}^b \mathbf{x_{t-1}}),$$

Negators and Intensifiers. Such as "not bad"

To encourage the generation of affect-rich words

$$\Psi_{t'} = -|V| \frac{1 + \delta ||\overline{VAD}(y_{t'})||_2}{\sum_{\hat{y}_{t'} \in V} (1 + \delta ||\overline{VAD}(\hat{y}_{t'})||_2)} \log(p(y_{t'})),$$
affective loss coefficient
(11)

Datasets:

Train: OpenSubtitles Valid: Cornell Movie Dialog Corpus Test: DailyDialog (the first two utterances)

Message	Model	Response
Mommy, can	S2S (MCT)	Of course you can stay
i stay up until		up late.
eleven of the	AR-S2S	Of course you can,
clock?	(MCT)	sweetheart.
You are home	S2S (MCT)	It was fine.
late today, david.	AR-S2S	Great fun today.
How was school?	(MCT)	
Do you like	S2S (PT)	Yes, i do.
singing?	S2S-Asghar	I do not know.
singing :	(PT)	
	AR-S2S (PT)	I love music.
I'm pretty sure	S2S (PT)	He will turn out to be a
that jim will turn		good lawyer.
out to be a good	S2S-Asghar	I'm sure he will.
lawyer.	(PT)	
	AR-S2S (PT)	The best lawyer in the
		world.

Table 5: Sample responses for models in both MCT and PT. Text in bold are <u>affect-rich words</u>.

Experiment 1: Model Component Test (MCT)

Experiment	Model	#Params	PPL†	PPL‡
	S2S	99M	42.5	124.3
	S2S-UI	99M	40.4	116.4
MCT (5M	S2S-GI	99M	40.7	120.3
pairs)	S2S-LI	99M	40.4	117.0
Model Component T	estS2S-AO	99M	40.2	115.7
	AR-S2S	99M	39.8	113.7
PT (3M	S2S	66M	41.2	130.6
pairs)	S2S-Asghar	66M	46.4	137.2
Preference Test	AR-S2S	66M	40.3	121.0

Table 2: Model test perplexity. Symbol † indicates indomain perplexity obtained on 10K test pairs from the <u>Open-Subtitles dataset</u>. Symbol ‡ indicates out-domain perplexity obtained on 10K test pairs from the <u>DailyDialog dataset</u>.

Model (%)	+2	+1	0	Score	Kappa
S2S	22.4	47.0	30.6	0.918	0.544
S2S-UI	30.0	48.6	21.4	1.086 (+18.3%)	0.458
S2S-GI	28.6	46.6	24.8	1.038 (+13.1%)	0.413
S2S-LI	29.4	47.2	23.4	1.060 (+15.5%)	0.525
S2S-AO	25.0	46.0	29.0	0.960 (+4.3%)	0.482
AR-S2S	29.6	44.8	25.6	1.040 (+13.3%)	0.487

Table 3: Human evaluations on <u>content quality</u> (MCT).

Model (%)	+2	+1	0	Score	Kappa
S2S	19.0	33.2	47.8	0.712	0.613
S2S-UI	23.6	36.0	40.4	0.832 (+16.9%)	0.483
S2S-GI	26.0	34.2	39.8	0.862 (+21.1%)	0.652
S2S-LI	24.6	36.4	39.0	0.856 (+20.2%)	0.706
S2S-AO	22.6	37.6	39.8	0.828 (+16.3%)	0.602
AR-S2S	26.8	37.2	36.0	0.908 (+27.5%)	0.625

Table 4: Human evaluations on emotion quality (MCT).

Analysis of Affective Attention

Figure 4: Learned parameter β (see equation (9)) in Valence (V) and Arousal (A) dimensions for several common negators and intensifiers. Left sub-figure: before AR-S2S is trained. Right sub-figure: after AR-S2S is trained.

Different "term importance" have different impacts on the attention strengths

Figure 5: Learned attention on a sample input sentence from the testing dataset. From top to bottom, the models are <u>S2S</u>, <u>S2S-UI</u>, <u>S2S-GI and S2S-LI</u>, respectively. Darker colors indicate larger strength.

Analysis of Affective Objective Function

	Threshold for l ₂ Norm of VAD			
Model	3	2	1	
S2S	25	104	190	
S2S-AO ($\delta = 0.5$)	36	138	219	
S2S-AO ($\delta = 1$)	50	154	234	
S2S-AO ($\delta = 2$)	69	177	256	

Table 6: Number of distinct affect-rich words (MCT).

	Threshold for l ₂ Norm of VAD		
Model	3	2	1
S2S	21	83	157
S2S-Asghar	31	120	217
AR-S2S	52	173	319

Table 7: Number of distinct affect-rich words (PT).

Experiment 2: Preference Test (PT)

Model (%)	Content	Emotion	Карра
S2S	64	26	0.522/0.749
S2S-Asghar	66 (+3.1%)	32 (+23.1%)	0.554/0.612
AR-S2S	80 (+25.0%)	49 (+88.5%)	0.619/0.704

Table 8: Human preference test (PT).

Experiment 3: Sensitivity Analysis

Figure 6: Sensitivity analysis for affect embedding strength λ , affective attention coefficient γ , and affective objective coefficient δ on model perplexity. The blue, red and green curves (*best viewed in color*) in the middle sub-figure represent μ_{ui} , μ_{gi} and μ_{li} (see equation (10)), respectively.

- fairly robust
- affect-rich words are less common than generic words in our training corpus and placing extra weights on them improves the overall prediction performance

Figure 7: Sensitivity analysis for affect embedding strength λ , affective attention coefficient γ , and affective objective coefficient δ on the number of distinct affect-rich words in randomly selected 1K test responses. The solid, dashed and dotted curves correspond to l_2 norm threshold of 1, 2 and 3, respectively. The blue, red and green curves (*best viewed in color*) in the middle sub-figure represent μ_{ui} , μ_{gi} and μ_{li} (see equation (10)), respectively.

Summary

- Strength
- 1. produces affect-rich responses without performance degradation in language fluency
- 2. Sufficient experiences in emotion and content
- Weakness
- 1. Not consider dynamic emotion flow of context in multi-turn settings.
- 2. The overall emotion state
- 3. The more emotional words, the better ??

Public Emotional Dialogue Dataset

- DailyDialog: Multi-turn with emotion category label
- EmotionLines: Multi-turn with emotion category label(TV and Fb)
- EmpatheticDialog: Multi-turn based on emotion label and situation

Thanks