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Contribution

* Present a critique of scheduled sampling --- the objective function
underlying scheduled sampling is improper and leads to an
inconsistent learning algorithm.

* Revisit the problems that scheduled sampling was meant to address,
and present an alternative interpretation.

* Introduce a generalization of adversarial training, and show how such
method can interpolate between maximum likelihood training and our
1deal training objective.



Scheduled Sampling

* For the n-th symbol we draw from a Bernoulli distribution with parameter &
to decide whether we keep the original symbol or use one generated by the
model

* If we decided to replace the symbol, we use the current model RNN to
output the predictive distribution of the next symbol given the current prefix,
and sample from this predictive distribution

* We add to the training loss the log predictive probability of the real n-th
symbol, given the prefix (the prefix at this point may already contain
generated characters)

* Depending on the cointlip above, the original or simulated character is
added to the prefix and we continue with the recursion



Critique to Scheduled Sampling

* Only consider a sequence of length 2 --- s = [X; X,]
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* As € change from 1 -> 0, the global optimum 1s between the true joint P and
the factorized distribution P,,P,,



Two Assumption and A Conclusion

* Perceived quality of each sample is related to the

o surprisal —10g Q,mn(X)

e Human observer has learnt an accurate model of the natural
distribution of stimuli.

° Qhuman(x) =P (X)

e Safer 1s better!



KL(gllp) and KL(pllq)

A iy

—_—p == argmingKL(p||q) «e+« argmingKL(g||p)

* Use KL(pllq) as an example
* KL(pllQ) = Esp(s) log 23
* g(s) >0 and p(s) -> 0, KL -> 0, make the model generate some samples that
do not locate on the data distribution.

* We need to minimize KL(qllp), but
* It 1s only well-defined when P 1s positive and bounded 1n the full support of Q
* P 1s an empirical distribution of samples in reality
* Q 1s a smooth probabilistic model in reality



Generalized Adversarial Training

JS:[P||Q] =7 - KL[P|[7P+ (1 —7)Q] + (1 — 7)KL[Q||7P + (1 — m)Q)]

A: P B: arg ming JSo.1[P||Q] C:argming JSo5[P||Q] D: argming JSp 99 [P||Q]




Conclusion

* Maximum likelihood should not be used as the training objective if
the end goal 1s to draw realistic samples from the model.

* Scheduled sampling, designed to overcome the shortcomings of
maximum likelihood, fails to address the fundamental problems.

* We theorize that KL[Q||P] could be used as an idealized objective
function, but it 1s impractical to use in practice.

* We propose the generalized Jensen-Shannon divergence as a
promising, more tractable objective function
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Motivation & Contribution

* To exploit the supervision signal from the discriminator, most previous
models leverage REINFORCE to address the non-differentiable
problem of sequential discrete data, which introduces high variance
and makes the model training quite unstable.

* To deal with such a problem, this paper propose a novel approach
called Cooperative Training (CoT) to improve the training of sequence
generative models.



Limitation of MLE and SeqGAN

* MLE

* KLpllg) = Xsp(s) log 23

* q(s) >0 and p(s) -> 0, KL -> 0, make the model generate some samples that
do not locate on the data distribution.

* SeqGAN

* High variance, which relies on pre-training via Maximum Likelihood
Estimation

* Mode collapse, which 1s cause by the reverse KL divergence.



Methodology

* CoT coordinately trains a generative A —Samrﬂj

module G, and an auxiliary predictive Data J s A M,
module M , called mediator, for Gy —Samples Mediator
guiding G 1n a cooperative fashion. ‘ Generator o

* The M 1s going to simulation the
distribution Of % (p data _|_ G 9) Figure 1. Process of Cooperative Training.



Algorithm Derivation

—objective for mediator

Lemma 1 (Mixture Density Decomposition)

Vg dm(o)
=V KL(M"||My)

* Mediator M, which is a density

function that estimates a mixture
distribution of the learned

. . . . =Vy E [log M*(s)}
generative distribution Gy and s L M (s)
target latent distribution pg,4¢q . =Vs(— E [logMy(s))
~Voq (B [logOf(s)) + E_[~1og(My(5)))
1 .
My ~ §(pdata + Gy). * The objective J,,,(¢) for the

mediator M parameterized by ¢
therefore becomes

In@) = 5 (B, [Flos(Mo(o)] + E_[~log(My(s))])



Algorithm Derivation

* The mediator is exploited to
optimize an estimated Jensen-
Shannon divergence for Gg

Jq(6)
= — JSD(G9||pdata)
1
= — S[KL(Goll My) + K L(pausl| M)

1 Go(s) } 1

=— = lo
2 SNI%G [ " My (s)

Pdata(S) }

v {log Mo (s)

2 S~ Pdata

generator object

* When calculating V6 ], (), the
second term has no effect on the
final results. Thus, we could use
this objective instead




Algorithm Derivation

— markov backward reduction

Lemma 2 (Markov Backward Reduction) ¢ Up to now, we are still not free
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Alg orithm Derivation —factorizing the cumulative gradient

Let
L(s;) = Togm,(s;) —1 ,
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Experiment.

--universal sequence modeling in synthetic Turing test

Table 1. Likelihood-based benchmark and time statistics for synthetic Turing test. *-(MLE)" means the best performance 1s acquired
during MLE pre-training.

MODEL NLL,;acte NLL;est(FINAL/BEST) BEST NLL,,acte + NLLcst TIME/EPOCH
MLE 9.08 8.97/7.60 9.43 +7.67 16.14 + 0.97s
SEQGAN(YU ET AL., 2017) 8.68 10.10/-(MLE) - (MLE) 817.64 + 5.41s
RANKGAN(LIN ET AL., 2017) 8.37 11.19/-(MLE) - (MLE) 1270 + 13.01s
MALIGAN(CHE ET AL., 2017) 8.73 10.07/-(MLE) - (MLE) 741.31 &+ 1.45s
SCHEDULED SAMPLING -

(BENGIO ET AL.. 2015) 8.89 8.71/-(MLE) - (MLE) 32.54 + 1.14s
FROFESSOR FORCING 9.43 8.31/-(MLE) _ (MLE) 487.13 + 0.95s

(LAMB ET AL., 2016)
COT (OURS) 8.19 8.03/7.54 8.19 + 8.03 53.94 +1.01s




Experiment.

--universal sequence modeling in synthetic Turing test
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EXP eriment__ Zero-prior Long & Diverse Text Generation

Table 2. N-gram-level quality benchmark: BLEU on test data of
EMNLP2017 WMT News.

Table 3. Diversity benchmark: estimated Word Mover Distance

. . . . . (CWMD) and NLLtest

*: Results under the conservative generation settings as is described

in LeakGAN’s :

AT PR MODEL EWMD¢c.t  EWMDyyain  NLL¢co
MODEL BLEU2 BLEU3 BLEU4 BLEUS MLE 1.015 6=0.023 0.947 5=0.019 2.365
MLE 0.781 0.482 0.225 0.105 SEQGAN 2.900 o=0.025 3.118 o=0.018 3.122
SEQGAN 0.731 0426  0.181 0.096 RANKGAN 4.451 0=0.083 4.829 5=0.021 3.083
FANKOAR RO A S MALIGAN 4.891 5=0061 4.962 o=0.020  3.240
LEAKGAN* 0:835 0:648 ():437 0:271 LEAKGAN 1.803 5=0.027 1.767 5=0.023 2.327
CoT-BASIC 0.785 0485  0.261 0.152 COT-BASIC 0.766 o=0.031 0.886 5=0.019 2.247
COT-STRONG 0.800 0.501 0.273 0.200
COT-STRONG* 0.856 0.701 0.510 0.310 COT-STRONG 0.923 5=0.018 0.941 s=0.016 2.144




Conclusion

* Propose a novel approach called Cooperative Training (CoT) to
improve the training of sequence generative models.

* Achieve independent success without the necessity of pre-training via
maximum likelihood estimation or involving REINFORCE.

* Achieve superior performance on sample quality, diversity, as well as
training stability.
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Motivation & Contribution

* Standard MLE training considers a word-level objective, predicting
the next word given the previous ground-truth partial sentence.

* This procedure focuses on modeling local syntactic patterns, and may
fail to capture long-range semantic structure.

* This paper imposes global sequence-level guidance via new
supervision based on optimal transport, enabling the overall
characterization and preservation of semantic features.



Semantic Matching with Optimal Transport

 OT distance on discrete domain

m

T;:;z::wZZTw

i=1 j=1

min
Tell(u,v)

Lot(p,v) (zi,yj) = (T, C)

* Use IPOT algorithm to calculate
the

* Algorithm 1 IPOT algorithm

I: Input: Feature vectors S = {z;}1, 8" = {2} }1"
and generalized stepsize 1/,

o=211,m T =1,1n"
C; .
Cl‘_,' — (,T(Zl'.Z;-). Al‘_,' s O_T.L
fort =1,2,3...do
Q = A o TW //® is Hadamard product

fork=1,... Kdo// 1\ = 1 in practice
0 = HQU g = mQTG
end for
T = diag(§)Qdiag(o)
end for

oYX N AW N

— p—

Return (T, C)

C
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soft argmax

Figure 2: Schematic computation graph of OT loss.

Algorithm 2 Seq2Seq Learning via Optimal Transport.

1: Input: batch size m, paired input and output sequences (X,Y)
2: Load MLE pre-trained Seq2Seq model M(-; @) and word embedding E
3: for iteration = 1, ... MaxlIter do

4: for:=1,..., m do

5: Draw a pair of sequences @;,y; ~ (X,Y), where ; = {w;,}, yi = {wi .}
6: Compute logit vectors from model: {v; ;} = M(x;;0)

7 Encode model belief: w; : = Soft-argmax(vi ¢ )

8: Feature vector embedding: S, ; = {E'I‘wi,,}. Sg,i = {E"'wi_,}

9: end for

0: Update the M(-;6) by optimizing: % Yo [ovmie(®i, yis 0) + vLseq(Sr,i, Sg.i)]
1: end for




Experiment

Table 1: BLEU scores on VI-EN and EN-VI.

Table 2: BLEU scores on DE-EN and EN-DE.

Systems NT2012 NT2013  Systems NT2013 NT2015
VI-EN: GNMT 20.7 238  DE-EN: GNMT 29.0 299
VI-EN: GNMT+ L., 21.9 254  DE-EN: GNMT+L,., 29.1 29.9
VI-EN: GNMT+Lyeg+Loopy 219 255  DE-EN: GNMT+Lg+ Loy~ 29.2 30.1
EN-VI: GNMT 3.8 26.1  EN-DE: GNMT 243 26.5
EN-VI: GNMT+ L., 24.4 265  EN-DE: GNMT+L,., 243 26.6
EN-VI: GNMT+Lyeg+Loopy ~ 24.5 269  EN-DE: GNMT+Lug+Lopy 246 26.8

Table 4: ROUGE scores on Gigaword.

Table 5: ROUGE scores on DUC2004.

Systems RG-1 RG-2 RG-L Systems RG-1 RG-2 RG-L
Seq2Seq 33.4 324 Seq2Seq 280 94 2438
Seq2Seq+Lseq 33.7 Seq2Seq+Lseq 29.5 9.8 25.5
Seq2Seq+Lseq+Leopy  36.2 34.0 Seq2Seq+Lseq+Leopy  30.1 10.1 26.0




Experiment

Table 6: Results for image captioning on the COCO dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr
Soft Attention (Xu et al., 2015) 70.7 49.2 344 243 23.9 -
Hard Attention (Xu et al., 2015) 71.8 50.4 35.7 25.0 23.0 -
Show & Tell (Vinyals et al., 2015) - - - 27.7 23.7 85.5
ATT-FCN (You et al., 2016) 70.9 53.7 40.2 30.4 243 -
SCN-LSTM (Gan et al., 2017) 72.8 56.6 43.3 33.0 25.7 101.2
Adaptive Attention (Lu et al., 2017) 74.2 58.0 439 33.2 26.6 108.5
Top-Down Attention (Anderson et al., 2018) 77.2 — - 36.2 27.0 113.5
No attention, Resnet-152

Show & Tell 70.3 53.7 39.9 29.5 23.6 87.1
Show & Tell+L ., (Ours) 70.9 54.2 404 30.1 239 90.0
No attention, Tag

Show & Tell 72.1 55.2 41.3 30.1 24.5 934
Show & Tell+L ., (Ours) 72.3 554 41.5 31.0 24.6 94.7
Soft attention, FastRCNN

Show, Attend & Tell 74.0 58.0 44.0 33.1 25.2 99.1

Show, Attend & Tell+L ., (Ours) 74.5 584 44.5 33.8 25.6 102.9




Conclusion

* This work 1s motivated by the major deficiency in training Seq2Seq
models: that the MLE training loss does not operate at sequence-level.

* This work propose the usage of optimal transport as a sequence-level
loss to improve Seq2Seq learning.

* By applying this new method to machine translation, text
summarization, and 1image captioning, this paper demonstrate that our
proposed model can be used to help improve the performance
compared to strong baselines.



