
Rethinking the
Generation Orders of

Sequence

jcykcai

Why left-to-right?

• Humans do it

• But humans also do

• First generate some abstract of what to say

• Then serialize them

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2942–2946

Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

2942

The Importance of Generation Order in Language Modeling

Nicolas Ford
⇤

Daniel Duckworth Mohammad Norouzi George E. Dahl

Google Brain
{nicf,duckworthd,mnorouzi,gdahl}@google.com

Abstract

Neural language models are a critical compo-
nent of state-of-the-art systems for machine
translation, summarization, audio transcrip-
tion, and other tasks. These language models
are almost universally autoregressive in nature,
generating sentences one token at a time from
left to right. This paper studies the influence of
token generation order on model quality via a
novel two-pass language model that produces
partially-filled sentence “templates” and then
fills in missing tokens. We compare various
strategies for structuring these two passes and
observe a surprisingly large variation in model
quality. We find the most effective strategy
generates function words in the first pass fol-
lowed by content words in the second. We be-
lieve these experimental results justify a more
extensive investigation of generation order for
neural language models.

1 Introduction

Neural networks have been extremely successful
statistical models of text in language modeling and
machine translation. Despite differences in model
architectures, state of the art neural nets gener-
ate sequences from left to right (Vaswani et al.,
2017; Jozefowicz et al., 2016; Wu et al., 2016).
Although in some sense humans produce and con-
sume language from left to right as well, there are
many other intuitively appealing ways to gener-
ate text. For instance, language is slow enough
on a neurological time scale for multiple passes
of generation that incorporate feedback to occur.
Linguistic intuition might suggest that we should
first generate some abstract representation of what
we want to say and then serialize it, a process that
seems more universally appropriate given the ex-
istence of languages with freer word order such as
Czech and Polish.

⇤Work done as a member of the Google AI Residency
program (g.co/airesidency)

There has been interest in moving beyond the
left-to-right generation order by developing alter-
native multi-stage strategies such as syntax-aware
neural language models (Bowman et al., 2016)
and latent variable models of text (Wood et al.,
2011). Before embarking on a long-term research
program to find better generation strategies that
improve modern neural networks, one needs ev-
idence that the generation strategy can make a
large difference. This paper presents one way of
isolating the generation strategy from the general
neural network design problem. Our key techni-
cal contribution involves developing a flexible and
tractable architecture that incorporates different
generation orders, while enabling exact computa-
tion of the log-probabilities of a sentence. Our ex-
periments demonstrate that even when using a few
simple two-pass generation orders, the differences
between good and bad orderings are substantial.

We consider ways of reordering the tokens
within a sequence based on their identities. The
best ordering we tried generates function words
first and content words last, which cuts against the
idea of committing to the general topic of a sen-
tence first and only then deciding exactly how to
phrase it. We offer some possible explanations in
Section 3, and we conclude that our experimen-
tal results justify a more extensive investigation of
the generation order for language and translation
models.

2 Two-pass Language Models

We develop a family of two-pass language mod-
els that depend on a partitioning of the vocabu-
lary into a set of first-pass and second-pass tokens
to generate sentences. We perform a preprocess-
ing step on each sequence y, creating two new se-
quences y(1) and y(2). The sequence y(1), which
we call the template, has the same length as y,
and consists of the first-pass tokens from y to-
gether with a special placeholder token wherever

EMNLP18

Goal

• Better generation order?

• Wait! Does it really matter?

Framework
• Two-pass language models

• Vocabulary partition: first-pass and second-pass
tokens

• Y = Y^1 + Y^2

• Y^1 (template): only consist of first-pass tokens and
special placeholders

• Y^2 the rest second-pass tokens

Order Variants

2943

sentence common first rare first function first content first odd first

” all you need to do
if you want the na-
tion ’s press camped
on your doorstep is to
say you once had a
[UNK] in 1947 , ”
he noted memorably in
his diary . [EOS]

” all you to if you
the ’s on
is to you had a

[UNK] in , ” he
in his . [EOS]

need do
want nation

press camped your
doorstep say
once 1947

noted memorably
diary [EOS]

” all you to if you
the ’s on your
is to you a

in , ” he in his
. [EOS]

need do
want nation press
camped doorstep

say once had
[UNK] 1947
noted memorably
diary [EOS]

” all you need
you the nation ’s

press camped on your
doorstep say you
once had
” noted his .
[EOS]

the team announced
thursday that the 6-
foot-1 , [UNK] starter
will remain in detroit
through the 2013 sea-
son . [EOS]

the that the ,
[UNK] will in

the . [EOS]

team announced
thursday 6-foot-1

starter remain
detroit through

2013 season [EOS]

the that the
, will in
through the .

[EOS]

team announced
thursday 6-foot-1

[UNK] starter
remain detroit
2013 season [EOS]

the team announced
the 6-foot-1
will remain

through the 2013 .
[EOS]

scotland ’s next game
is a friendly against
the czech republic at
hampden on 3 march .
[EOS]

’s is a the
at on . [EOS]

scotland next game
friendly against

czech republic ham-
pden 3 march
[EOS]

’s is a against
the at on .
[EOS]

scotland next game
friendly

czech republic ham-
pden 3 march
[EOS]

’s next game
the czech republic at

hampden on 3 march .
[EOS]

of course , millions of
additional homeown-
ers did make a big mis-
take : they took ad-
vantage of ” liar loans
” and other [UNK]
deals to buy homes
they couldn ’t afford .
[EOS]

of , of
a : they of
” ” and [UNK]

to they ’t .
[EOS]

course millions
additional homeown-
ers did make big
mistake took ad-
vantage liar loans

other deals
buy homes couldn
afford [EOS]

of , of a
: they of ”

” and to
they . [EOS]

course millions
additional home-

owners did make
big mistake

took advantage
liar loans other
[UNK] deals buy
homes couldn ’t
afford [EOS]

of of additional
big

they advantage of
” liar ” and other

deals buy homes
they couldn afford .
[EOS]

Table 1: Some example sentences from the dataset and their corresponding templates. The placeholder token is
indicated by “ ”.

y had a second-pass token. The sequence y(2) has
length equal to the number of these placeholders,
and consists of the second-pass tokens from y in
order.

We use a neural language model p1 to generate
y(1), and then a conditional translation model p2
to generate y(2) given y(1). Note that, since the
division of the vocabulary into first- and second-
pass tokens is decided in advance, there is a one-
to-one correspondence between sequences y and
pairs (y(1),y(2)). The total probability of y is then

p(y) = p1(y
(1)) p2(y

(2) | y(1)) . (1)

Two-pass language models present a unique op-
portunity to study the importance of generation or-
der because, since the template is a deterministic
function of y, the probability of y can be com-
puted exactly. This is in contrast to a language
model using a latent generation order, which re-
quires a prohibitive marginalization over permu-
tations to compute the exact probabilities. Given
the tractable nature of the model, exact learning
based on log-likelihood is possible, and we can
compare different vocabulary partitioning strate-
gies both against each other and against a single-
pass language model.

Our implementation consists of two copies of
the Transformer model from Vaswani et al. (2017).
The first copy just generates the template, so it has
no encoder. The second copy is a sequence-to-

sequence model that translates the template into
the complete sentence. There are three places in
this model where word embeddings appear — the
first-phase decoder, the second-phase encoder, and
the second-phase decoder — and all three sets
of parameters are shared. The output layer also
shares the embedding parameters.1

For the second pass, we include the entire target
sentence, not just the second-pass tokens, on the
output side. In this way, when generating a token,
the decoder is allowed to examine all tokens to the
left of its position. However, only the second-pass
tokens count toward the loss, since in the other po-
sitions the correct token is already known. Our
loss function is then the sum of all of these num-
bers (from both copies) divided by the length of
the original sentence, which is the log-perplexity
that our model assigns to the sentence.

We tried five different ways of splitting the vo-
cabulary:

Common First and Rare First: The vocabu-
lary was sorted by frequency and then a cutoff was
chosen, splitting the vocabulary into “common”
and “rare” tokens. The location of the cutoff2 was
chosen so that the number of common tokens and
the number of rare tokens in the average sentence
were approximately the same. In “common first”

1This behavior is enabled in the publicly available im-
plementation of Transformer using the hyperparameter called
shared embedding and softmax weights.

2In our experiments on LM1B, this is at index 78.

Language Models

• The total probability of a sentence y is

• The template y^1 is a deterministic function of y

• Template decoder + Template encoder + second-phrase
decoder

2943

sentence common first rare first function first content first odd first

” all you need to do
if you want the na-
tion ’s press camped
on your doorstep is to
say you once had a
[UNK] in 1947 , ”
he noted memorably in
his diary . [EOS]

” all you to if you
the ’s on
is to you had a

[UNK] in , ” he
in his . [EOS]

need do
want nation

press camped your
doorstep say
once 1947

noted memorably
diary [EOS]

” all you to if you
the ’s on your
is to you a

in , ” he in his
. [EOS]

need do
want nation press
camped doorstep

say once had
[UNK] 1947
noted memorably
diary [EOS]

” all you need
you the nation ’s

press camped on your
doorstep say you
once had
” noted his .
[EOS]

the team announced
thursday that the 6-
foot-1 , [UNK] starter
will remain in detroit
through the 2013 sea-
son . [EOS]

the that the ,
[UNK] will in

the . [EOS]

team announced
thursday 6-foot-1

starter remain
detroit through

2013 season [EOS]

the that the
, will in
through the .

[EOS]

team announced
thursday 6-foot-1

[UNK] starter
remain detroit
2013 season [EOS]

the team announced
the 6-foot-1
will remain

through the 2013 .
[EOS]

scotland ’s next game
is a friendly against
the czech republic at
hampden on 3 march .
[EOS]

’s is a the
at on . [EOS]

scotland next game
friendly against

czech republic ham-
pden 3 march
[EOS]

’s is a against
the at on .
[EOS]

scotland next game
friendly

czech republic ham-
pden 3 march
[EOS]

’s next game
the czech republic at

hampden on 3 march .
[EOS]

of course , millions of
additional homeown-
ers did make a big mis-
take : they took ad-
vantage of ” liar loans
” and other [UNK]
deals to buy homes
they couldn ’t afford .
[EOS]

of , of
a : they of
” ” and [UNK]

to they ’t .
[EOS]

course millions
additional homeown-
ers did make big
mistake took ad-
vantage liar loans

other deals
buy homes couldn
afford [EOS]

of , of a
: they of ”

” and to
they . [EOS]

course millions
additional home-

owners did make
big mistake

took advantage
liar loans other
[UNK] deals buy
homes couldn ’t
afford [EOS]

of of additional
big

they advantage of
” liar ” and other

deals buy homes
they couldn afford .
[EOS]

Table 1: Some example sentences from the dataset and their corresponding templates. The placeholder token is
indicated by “ ”.

y had a second-pass token. The sequence y(2) has
length equal to the number of these placeholders,
and consists of the second-pass tokens from y in
order.

We use a neural language model p1 to generate
y(1), and then a conditional translation model p2
to generate y(2) given y(1). Note that, since the
division of the vocabulary into first- and second-
pass tokens is decided in advance, there is a one-
to-one correspondence between sequences y and
pairs (y(1),y(2)). The total probability of y is then

p(y) = p1(y
(1)) p2(y

(2) | y(1)) . (1)

Two-pass language models present a unique op-
portunity to study the importance of generation or-
der because, since the template is a deterministic
function of y, the probability of y can be com-
puted exactly. This is in contrast to a language
model using a latent generation order, which re-
quires a prohibitive marginalization over permu-
tations to compute the exact probabilities. Given
the tractable nature of the model, exact learning
based on log-likelihood is possible, and we can
compare different vocabulary partitioning strate-
gies both against each other and against a single-
pass language model.

Our implementation consists of two copies of
the Transformer model from Vaswani et al. (2017).
The first copy just generates the template, so it has
no encoder. The second copy is a sequence-to-

sequence model that translates the template into
the complete sentence. There are three places in
this model where word embeddings appear — the
first-phase decoder, the second-phase encoder, and
the second-phase decoder — and all three sets
of parameters are shared. The output layer also
shares the embedding parameters.1

For the second pass, we include the entire target
sentence, not just the second-pass tokens, on the
output side. In this way, when generating a token,
the decoder is allowed to examine all tokens to the
left of its position. However, only the second-pass
tokens count toward the loss, since in the other po-
sitions the correct token is already known. Our
loss function is then the sum of all of these num-
bers (from both copies) divided by the length of
the original sentence, which is the log-perplexity
that our model assigns to the sentence.

We tried five different ways of splitting the vo-
cabulary:

Common First and Rare First: The vocabu-
lary was sorted by frequency and then a cutoff was
chosen, splitting the vocabulary into “common”
and “rare” tokens. The location of the cutoff2 was
chosen so that the number of common tokens and
the number of rare tokens in the average sentence
were approximately the same. In “common first”

1This behavior is enabled in the publicly available im-
plementation of Transformer using the hyperparameter called
shared embedding and softmax weights.

2In our experiments on LM1B, this is at index 78.

Experiments

• PPL on LM1B

• Content-dependent generation orders do have a large effect on model quality

• Function-first is the best (common-first is the second)

• It is easier to first decide syntactic structure

• Delay the rare tokens

2945

Model Train Validation Test
odd first 39.925 45.377 45.196
rare first 38.283 43.293 43.077

content first 38.321 42.564 42.394
common first 36.525 41.018 40.895
function first 36.126 40.246 40.085

baseline 38.668 41.888 41.721
enhanced baseline 35.945 39.845 39.726

Table 2: The perplexities achieved by the best version of each of our models.

simply be that it is preferable to delay committing
to a rare token for as long as possible as all subse-
quent decisions will then be conditioning on a low-
probability event. This is particularly problematic
in language modeling where datasets are too small
to cover the space of all utterances. We lack suffi-
cient evidence to decide between these hypotheses
and believe further investigation is necessary.

Ultimately, our results show that content-
dependent generation orders can have a surpris-
ingly large effect on model quality. Moreover, the
gaps between different generation strategies can
be quite large.

4 Related Work

For tasks conditioning on sequences and sets, it is
well known that order significantly affects model
quality in applications such as machine transla-
tion (Sutskever et al., 2014), program synthesis
(Vinyals et al., 2016), and text classification (Yo-
gatama et al., 2016). Experimentally, Khandelwal
et al. (2018) show that recurrent neural networks
have a memory that degrades with time. Tech-
niques such as attention (Bahdanau et al., 2014)
can be seen as augmenting that memory.

Text generation via neural networks, as in lan-
guage models and machine translation, proceeds
almost universally left-to-right (Jozefowicz et al.,
2016; Sutskever et al., 2014). This is in stark con-
trast to phrase-based machine translation systems
(Charniak et al., 2003) which traditionally split
token translation and “editing” (typically via re-
ordering) into separate stages. This line of work is
carried forward in Post-Editing Models (Junczys-
Dowmunt and Grundkiewicz, 2016), Deliberation
Networks (Xia et al., 2017), and Review Network
(Yang et al., 2016) which produce a “draft” de-
coding that is further edited. As any valid se-
quence may be used in a draft, calculating perplex-
ity in these models is unfortunately intractable,

and model quality can only be evaluated via ex-
ternal tasks.

In addition to surface-form intermediate rep-
resentation, syntax-based representations have a
rich history in text modeling. Chelba and Je-
linek (1998); Yamada and Knight (2001); Graham
and Genabith (2010); Shen et al. (2018) integrate
parse structures, explicitly designed or automati-
cally learned, into the decoding process.

Similar to the second phase of this work’s pro-
posed model, (Fedus et al., 2018) directly tackles
the problem of filling in the blank, akin to the sec-
ond stage of our proposed model. The Multi-Scale
version of PixelRNN in (Van Oord et al., 2016)
was also an inspiration for the two-pass setup we
used here.

5 Conclusion and Future Work

To investigate the question of generation order
in language modeling, we proposed a model that
generates a sentence in two passes, first generat-
ing tokens from left to right while skipping over
some positions and then filling in the positions that
it skipped. We found that the decision of which to-
kens to place in the first pass had a strong effect.

Given the success of our function word first
generation procedure, we could imagine taking
this idea beyond splitting the vocabulary. One
could run a parser on each sentence and use the
resulting tree to decide on the generation order.
Such a scheme might shed light on which aspect
of this split was most helpful. Finally, filling in a
template with missing words is a task that might be
interesting in its own right. One might want to pro-
vide partial information about the target sentence
as part of scripting flexible responses for a dia-
logue agent, question answering system, or other
system that mixes a hand-designed grammar with
learned responses.

Recent Advances
https://arxiv.org/pdf/1902.01370.pdf
https://arxiv.org/pdf/1902.02192.pdf
https://arxiv.org/pdf/1902.03249.pdf

http://arxiv.org/pdf/1902.01370.pdf
http://arxiv.org/pdf/1902.02192.pdf
http://arxiv.org/pdf/1902.03249.pdf

Insertion Transformer:

Flexible Sequence Generation via Insertion Operations

Mitchell Stern
1 2

William Chan
1

Jamie Kiros
1

Jakob Uszkoreit
1

Abstract

We present the Insertion Transformer, an itera-
tive, partially autoregressive model for sequence
generation based on insertion operations. Unlike
typical autoregressive models which rely on a
fixed, often left-to-right ordering of the output,
our approach accommodates arbitrary orderings
by allowing for tokens to be inserted anywhere
in the sequence during decoding. This flexibil-
ity confers a number of advantages: for instance,
not only can our model be trained to follow spe-
cific orderings such as left-to-right generation or
a binary tree traversal, but it can also be trained
to maximize entropy over all valid insertions for
robustness. In addition, our model seamlessly ac-
commodates both fully autoregressive generation
(one insertion at a time) and partially autoregres-
sive generation (simultaneous insertions at multi-
ple locations). We validate our approach by ana-
lyzing its performance on the WMT 2014 English-
German machine translation task under various
settings for training and decoding. We find that
the Insertion Transformer outperforms many prior
non-autoregressive approaches to translation at
comparable or better levels of parallelism, and
successfully recovers the performance of the orig-
inal Transformer while requiring only logarithmi-
cally many iterations during decoding.

1. Introduction

Neural sequence models (Sutskever et al., 2014; Cho et al.,
2014) have been successfully applied to many applications,
including machine translation (Bahdanau et al., 2015; Lu-
ong et al., 2015), speech recognition (Bahdanau et al., 2016;
Chan et al., 2016), speech synthesis (Oord et al., 2016a;
Wang et al., 2017), image captioning (Vinyals et al., 2015b;

1Google Brain, Mountain View, Toronto, Berlin
2University of California, Berkeley. Correspondence to:
Mitchell Stern <mitchell@berkeley.edu>, William Chan
<williamchan@google.com>.

Preprint. Work in progress.

Xu et al., 2015) and image generation (Oord et al., 2016b;c).
These models have a common theme: they rely on the chain-
rule factorization and have an autoregressive left-to-right
structure. This formulation bestows many advantages in
both training and inference. Log-likelihood computation is
tractable, allowing for efficient maximum likelihood learn-
ing. Efficient approximate inference is also made possible
through beam search decoding. However, the autoregressive
framework does not easily accommodate for parallel token
generation or more elaborate generation orderings (e.g., tree
orders).

More recently, there has been work on non-autoregressive
sequence models such as the Non-Autoregressive Trans-
former (NAT) (Gu et al., 2018) and the Iterative Refinement
model (Lee et al., 2018). In both of these models, the de-
coder is seeded with an initial input derived from the source
sequence, then produces the entire target sequence in paral-
lel. Lee et al. (2018) adds an iterative refinement stage to the
decoder in which a new hypothesis is produced conditioning
on the input and the previous output.

While allowing for highly parallel generation, there are a
few drawbacks to such approaches. The first is that the target
sequence length needs to be chosen up front, preventing the
output from growing dynamically as generation proceeds.
This can be problematic if the chosen length is too short
to accommodate the desired target, or can be wasteful if
it is too long. In the case of Gu et al. (2018), there is
also a strong conditional independence assumption between
output tokens, limiting the model’s expressive power. Lee
et al. (2018) relaxes this assumption but in turn requires two
separate decoders for the initial hypothesis generation and
the iterative refinement stage.

In this work, we present a flexible sequence generation
framework based on insertion operations. The Insertion
Transformer is an iterative, partially autoregressive model
which can be trained in a fully end-to-end fashion. Gen-
eration is accomplished by repeatedly making insertions
into an initially-empty output sequence until a termination
condition is met. Our approach bypasses the problem of
needing to predict the target sequence length ahead of time
by allowing the output to grow dynamically, and also per-
mits deviation from classic left-to-right generation, allowing

ar
X

iv
:1

90
2.

03
24

9v
1

 [c
s.C

L]
 8

 F
eb

 2
01

9

ICML19

Model
• Architecture

• Transformer with full self-attention decoder

• Slot representations

• Content-location distribution

• What to insert & where to insert

•

Insertion Transformer: Flexible Sequence Generation via Insertion Operations

Serial generation:

t Canvas Insertion

0 [] (ate, 0)
1 [ate] (together, 1)
2 [ate, together] (friends, 0)
3 [friends, ate, together] (three, 0)
4 [three, friends, ate, together] (lunch, 3)
5 [three, friends, ate, lunch, together] (hEOSi, 5)

Parallel generation:

t Canvas Insertions

0 [] (ate, 0)
1 [ate] (friends, 0), (together, 1)
2 [friends, ate, together] (three, 0), (lunch, 2)
3 [three, friends, ate, lunch, together] (hEOSi, 5)

Figure 1. Examples demonstrating how the clause “three friends ate lunch together” can be generated using our insertion framework. On
the left, a serial generation process is used in which one insertion is performed at a time. On the right, a parallel generation process is used
with multiple insertions being allowed per time step. Our model can either be trained to follow specific orderings or to maximize entropy
over all valid actions. Some options permit highly efficient parallel decoding, as shown in our experiments.

for more exotic orderings like balanced binary trees.

During inference, the Insertion Transformer can be used
in an autoregressive manner for serial decoding, with one
insertion operation being applied at a time, or in a partially
autoregressive manner for parallel decoding, with insertions
at multiple locations being applied simultaneously. This
allows for the target sequence to grow exponentially in
length. In the case of a balanced binary tree order, our
model can use as few as blog2 nc+ 1 operations to produce
a sequence of length n, which we find achievable in practice
using an appropriately chosen loss function during training.

2. Sequence Generation via Insertion

Operations

In this section, we describe the abstract framework used by
the Insertion Transformer for sequence generation. The next
section then describes the concrete model architecture we
use to implement this framework.

We begin with some notation. Let x be our source can-
vas and y be our target canvas. In the regime of sequence
modeling, a canvas is a sequence and we use the terms
interchangeably. While this paper focuses on sequence gen-
eration, we note that our framework can be generalized to
higher-dimensional outputs (e.g., image generation).

Let ŷt be the hypothesis canvas at time t. Because our
framework only supports insertions and not reordering
operations, it must be a subsequence of the final output
hypothesis ŷ. For example, if the eventual output were
ŷ = [A,B,C,D,E], then ŷt = [B,D] would be a valid
intermediate canvas while ŷt = [B,A] would not. We do
not restrict ourselves to one insertion per step, meaning ŷt

could have more than t tokens.

Further, let C be our content vocabulary (i.e., token vocabu-
lary for sequences). At each iteration t, the Insertion Trans-
former produces a joint distribution over the choice of con-
tent c 2 C and all available insertion locations l 2 [0, |ŷt|]
in the current hypothesis canvas ŷt. In other words, the

Insertion Transformer models both what to insert and where
to insert relative to the current canvas hypothesis ŷt:

p(c, l | x, ŷt) = InsertionTransformer(x, ŷt). (1)

As an example, suppose our current hypothesis canvas
is ŷt = [B,D] and we select the insertion operation
(c = C, l = 1). This will result in the new hypothesis
canvas ŷt+1 = [B,C,D]. Also see Figure 1 for an example
showing the full generation process for a typical English
sentence.

The permitted insertion locations allow for insertions any-
where in the canvas from the leftmost slot (l = 0) to the
rightmost slot (l = |ŷt|). Generation always begins with an
empty canvas ŷ0 = [] with just a single insertion location
l = 0, and concludes when a special marker token is emit-
ted. Exact details on termination handling can be found in
Section 4.4, where we describe two variants.

3. Insertion Transformer Model

The concrete model we use for the Insertion Transformer
is a modified version of the original Transformer (Vaswani
et al., 2017), with the decoder having been altered to induce
a distribution over insertions anywhere in the current output
rather than just at the end. We outline the key changes
below.

Full Decoder Self-Attention. We remove the causal self-
attention mask from the decoder so that all positions can
attend to all other positions, as opposed to just those to the
left of the current position. This allows each decision to
condition on the full context of the canvas hypothesis for
the current iteration.

Slot Representations via Concatenated Outputs. The
standard Transformer decoder produces n vectors for a se-
quence of length n, one per position, with the last one being
used to pick the next word. Our model instead requires
n + 1 vectors, one for each of the n � 1 slots between

Termination

• Termination conditions

• Sequence finalization

• Slot finalization (enable parallel inference)

Insertion Transformer: Flexible Sequence Generation via Insertion Operations

Serial generation:

t Canvas Insertion

0 [] (ate, 0)
1 [ate] (together, 1)
2 [ate, together] (friends, 0)
3 [friends, ate, together] (three, 0)
4 [three, friends, ate, together] (lunch, 3)
5 [three, friends, ate, lunch, together] (hEOSi, 5)

Parallel generation:

t Canvas Insertions

0 [] (ate, 0)
1 [ate] (friends, 0), (together, 1)
2 [friends, ate, together] (three, 0), (lunch, 2)
3 [three, friends, ate, lunch, together] (hEOSi, 5)

Figure 1. Examples demonstrating how the clause “three friends ate lunch together” can be generated using our insertion framework. On
the left, a serial generation process is used in which one insertion is performed at a time. On the right, a parallel generation process is used
with multiple insertions being allowed per time step. Our model can either be trained to follow specific orderings or to maximize entropy
over all valid actions. Some options permit highly efficient parallel decoding, as shown in our experiments.

for more exotic orderings like balanced binary trees.

During inference, the Insertion Transformer can be used
in an autoregressive manner for serial decoding, with one
insertion operation being applied at a time, or in a partially
autoregressive manner for parallel decoding, with insertions
at multiple locations being applied simultaneously. This
allows for the target sequence to grow exponentially in
length. In the case of a balanced binary tree order, our
model can use as few as blog2 nc+ 1 operations to produce
a sequence of length n, which we find achievable in practice
using an appropriately chosen loss function during training.

2. Sequence Generation via Insertion

Operations

In this section, we describe the abstract framework used by
the Insertion Transformer for sequence generation. The next
section then describes the concrete model architecture we
use to implement this framework.

We begin with some notation. Let x be our source can-
vas and y be our target canvas. In the regime of sequence
modeling, a canvas is a sequence and we use the terms
interchangeably. While this paper focuses on sequence gen-
eration, we note that our framework can be generalized to
higher-dimensional outputs (e.g., image generation).

Let ŷt be the hypothesis canvas at time t. Because our
framework only supports insertions and not reordering
operations, it must be a subsequence of the final output
hypothesis ŷ. For example, if the eventual output were
ŷ = [A,B,C,D,E], then ŷt = [B,D] would be a valid
intermediate canvas while ŷt = [B,A] would not. We do
not restrict ourselves to one insertion per step, meaning ŷt

could have more than t tokens.

Further, let C be our content vocabulary (i.e., token vocabu-
lary for sequences). At each iteration t, the Insertion Trans-
former produces a joint distribution over the choice of con-
tent c 2 C and all available insertion locations l 2 [0, |ŷt|]
in the current hypothesis canvas ŷt. In other words, the

Insertion Transformer models both what to insert and where
to insert relative to the current canvas hypothesis ŷt:

p(c, l | x, ŷt) = InsertionTransformer(x, ŷt). (1)

As an example, suppose our current hypothesis canvas
is ŷt = [B,D] and we select the insertion operation
(c = C, l = 1). This will result in the new hypothesis
canvas ŷt+1 = [B,C,D]. Also see Figure 1 for an example
showing the full generation process for a typical English
sentence.

The permitted insertion locations allow for insertions any-
where in the canvas from the leftmost slot (l = 0) to the
rightmost slot (l = |ŷt|). Generation always begins with an
empty canvas ŷ0 = [] with just a single insertion location
l = 0, and concludes when a special marker token is emit-
ted. Exact details on termination handling can be found in
Section 4.4, where we describe two variants.

3. Insertion Transformer Model

The concrete model we use for the Insertion Transformer
is a modified version of the original Transformer (Vaswani
et al., 2017), with the decoder having been altered to induce
a distribution over insertions anywhere in the current output
rather than just at the end. We outline the key changes
below.

Full Decoder Self-Attention. We remove the causal self-
attention mask from the decoder so that all positions can
attend to all other positions, as opposed to just those to the
left of the current position. This allows each decision to
condition on the full context of the canvas hypothesis for
the current iteration.

Slot Representations via Concatenated Outputs. The
standard Transformer decoder produces n vectors for a se-
quence of length n, one per position, with the last one being
used to pick the next word. Our model instead requires
n + 1 vectors, one for each of the n � 1 slots between

Training
• The form of single training instances

• Sample generation steps (partial sentences)

• Variants

• Left-to-right

• Balanced Binary Tree

• Uniform

Results
Insertion Transformer: Flexible Sequence Generation via Insertion Operations

Loss Termination BLEU (+EOS) BLEU (+EOS) BLEU (+EOS)

+Distillation +Distillation, +Parallel

Left-to-Right Sequence 20.92 (20.92) 23.29 (23.36) -

Binary Tree (⌧ = 0.5) Slot 20.35 (21.39) 24.49 (25.55) 25.33 (25.70)
Binary Tree (⌧ = 1.0) Slot 21.02 (22.37) 24.36 (25.43) 25.43 (25.76)
Binary Tree (⌧ = 2.0) Slot 20.52 (21.95) 24.59 (25.80) 25.33 (25.80)

Uniform Sequence 19.34 (22.64) 22.75 (25.45) -
Uniform Slot 18.26 (22.16) 22.39 (25.58) 24.31 (24.91)

Table 1. Development BLEU scores obtained via greedy decoding for our basic models trained with various loss functions and termination
strategies. The +EOS numbers are the BLEU score obtained when an EOS penalty is applied during decoding to discourage premature
stopping. The +Distillation numbers are for models trained with distilled data. The +Parallel numbers are obtained with parallel decoding,
which is applicable to models trained with the slot finalization termination condition.

Since the parallel decoding scheme described here allows
for a token to be inserted in every slot at every time step,
a sequence of length n could theoretically be generated in
as few as blog2 nc+ 1 steps. We find that this logarithmic
complexity is attainable in practice in our experiments.

6. Experiments

In this section, we explore the efficacy of our approach
on a real-world machine translation task, analyzing its
performance under different training conditions, architec-
tural choices, and decoding procedures. We experiment
on the WMT 2014 English-German translation dataset,
using newstest2013 for development and newstest2014
for testing, respectively. All our experiments are imple-
mented in TensorFlow (Abadi et al., 2015) using the Ten-
sor2Tensor framework (Vaswani et al., 2018). We use the
default transformer base hyperparameter set reported
by Vaswani et al. (2018) for all hyperparameters not specific
to our model. We perform no additional hyperparameter
tuning. All our models are trained for 1,000,000 steps on
eight P100 GPUs.

6.1. Baseline Results

We first train the baseline version of our model with different
choices of loss functions and termination strategies. Greedy
decoding results on the development set are given for each
setting in the third column of Table 1.

We observe that the binary tree loss performs the best when
standard greedy decoding is used, attaining a development
BLEU score of 21.02. We also find that our left-to-right
models do poorly compared to other orderings. One expla-
nation is that the gradients of the binary tree and uniform
losses are much more informative, in that they capture infor-
mation on all the missing tokens, whereas left-to-right only
provides information about the next one. We note that in
all cases, even after 1M steps the models are still improving
and do not appear to overfit.

Upon inspecting the outputs of these models, we found
that some of the most common and severe mistakes were
due to the model assigning high probability to the terminal
token (end-of-slot or end-of-sequence, both abbreviated
as EOS) too early in the decoding process, resulting in
artificially short outputs. To rectify this, we introduce an
EOS penalty hyperparameter, which is a scalar subtracted
from the log-probability assigned by the model to an EOS
at each location during decoding. Using a penalty of �

prevents the model from selecting an EOS unless there is
a difference of at least � between the log-probability of
EOS and the log-probability of the second-best choice. This
approach is similar the length normalization techniques used
in many sequence models (Graves, 2012). We perform a
sweep over the range [0, 7] and report the best result for
each model in parentheses. A well-chosen EOS penalty
can have a sizable effect, increasing the BLEU score by
nearly 4 points in some cases, and its inclusion brings the
highest development score to 22.64 for the uniform loss
with sequence-level finalization.

6.2. Knowledge Distillation

One technique shown to improve model performance on a
wide variety of tasks is knowledge distillation (Hinton et al.,
2015; Kim & Rush, 2016), wherein a model is trained on
the outputs of another model. We use the base Transformer
model from Vaswani et al. (2017) with beam search as our
teacher model, and rerun a subset of the baseline experi-
ments from the previous section on the resulting distilled
data. The results are given in the fourth column of Table 1.

We observe improvements of 3 to 4 BLEU points across
the board, showing that distillation is remarkably effective
for our setting. As before, the models trained with a bi-
nary tree loss are approximately 2 BLEU points better than
those trained with a uniform loss when standard decoding
is performed, but the differences largely vanish when using
a properly-tuned EOS penalty for each model. The best
model by a small margin is the one trained with a binary

• +Parallel is even better!

• Greedy search may suffer from issues related to local search that are
circumvented by making multiple updates to the hypothesis at once.

Results
Insertion Transformer: Flexible Sequence Generation via Insertion Operations

Model BLEU Iterations

Autoregressive Left-to-Right
Transformer (Vaswani et al., 2017) 27.3 n

Semi-Autoregressive Left-to-Right
SAT (Wang et al., 2018) 24.83 n/6

Blockwise Parallel (Stern et al., 2018) 27.40 ⇡ n/5

Non-Autoregressive
NAT (Gu et al., 2018) 17.69 1

Iterative Refinement (Lee et al., 2018) 21.61 10

Our Approach (Greedy)
Insertion Transformer + Left-to-Right 23.94 n

Insertion Transformer + Binary Tree 27.29 n

Insertion Transformer + Uniform 27.12 n

Our Approach (Parallel)
Insertion Transformer + Binary Tree 27.41 ⇡ log2 n

Insertion Transformer + Uniform 26.72 ⇡ log2 n

Table 4. BLEU scores on the newstest2014 test set for the WMT
2014 English-German translation task. Our parallel decoding strat-
egy attains the same level of accuracy reached by linear-complexity
models while using only a logarithmic number of decoding itera-
tions.

canvas is an embedding space, while our canvas contains
discrete tokens. They applied their approach to language
modeling tasks, whereas we apply ours to conditional lan-
guage generation in machine translation.

In addition, there has been recent work on non-
autoregressive machine translation (Gu et al., 2018; Lee
et al., 2018) and semi-autoregressive translation (Stern et al.,
2018; Wang et al., 2018). The key difference between our
work and prior work is that the Insertion Transformer frame-
work can accommodate for a dynamically growing canvas
size while still achieving sub-linear generation complexity.
Other models also tend to degrade with increasing paral-
lelism, while our model trained with the balanced binary tree
loss suffers no model degradation under parallel decoding.

We must also mention the concurrent work of Gu et al.
(2019).1 They similarly use an insertion-based framework
to generate sequences, but there are some differences and
tradeoffs between our approaches. The main difference is
that we model each successive canvas explicitly after a set of
insertions, while Gu et al. (2019) model the canvas implicitly
by conditioning on the insertion sequence. Consequently,
Gu et al. (2019)’s approach is autoregressive, can rely on
cached decoder states, and permits standard beam search,
while our approach must recompute the decoder states with
each iteration, but is partially autoregressive and thereby
allows for parallel decoding. Gu et al. (2019) also explored
tree-based orders, but while they found the syntactic tree

1We note that the research described in this paper was car-
ried out independently and without communication with Gu et al.
(2019) and Welleck et al. (2019).

order from a dependency parser to do slightly worse than
a left-to-right baseline, we find our balanced binary tree
approach to match the standard Transformer even when
using parallel decoding.

Finally, we also note that Welleck et al. (2019)1 concurrently
explored generation using a tree formulation, similar to our
Insertion Transformer implementation. However, they did
not explore the balanced binary tree policy examined in this
work, nor did they adapt their model for parallel generation,
instead opting to use a serialized in-order traversal. More-
over, on a machine translation task, Welleck et al. (2019)
found left-to-right generation to be superior to their learned
orderings, while our balanced binary tree approach is able
to match the performance of the standard Transformer.

8. Conclusion

In this paper, we presented the Insertion Transformer, a par-
tially autoregressive model for sequence generation based
on insertion operations. Our model can be trained to fol-
low arbitrary generation orderings, such as a left-to-right
order or a balanced binary tree order, or can be optimized
to learn all possible orderings, making it also applicable to
completion or infilling tasks. The model can be decoded
serially, producing one token at a time, or it can be decoded
in parallel with simultaneous insertions at multiple locations.
When using the binary tree loss, we find empirically that
we can generate sequences of length n using close to the
asymptomatic limit of blog2 nc+1 steps without any quality
degradation. This allows us to match the performance of the
standard Transformer on the WMT 2014 English-German
translation task while using substantially fewer iterations
during decoding.

Acknowledgements

We give thanks to Zhifeng Chen, Geoffrey Hinton, Moham-
mad Norouzi, Oscar Täckström and the Google Brain Team
for useful comments, discussions, and technical assistance.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Is-
ard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viégas, F., Vinyals, O., Warden, P., Watten-
berg, M., Wicke, M., Yu, Y., and Zheng, X. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Sys-
tems, 2015.

• Comparable performance

• Fewer generation iteration => faster?

Limitations

• Must recompute the decoder hidden stat for each
position after each insertion

• Auto-regressive vs. non-autoregressive

• Expressive power vs. parallel decoding

Non-Monotonic Sequential Text Generation

Sean Welleck 1 Kianté Brantley 2 Hal Daumé III 2 3 Kyunghyun Cho 1 4 5

Abstract
Standard sequential generation methods assume a
pre-specified generation order, such as text gener-
ation methods which generate words from left to
right. In this work, we propose a framework for
training models of text generation that operate in
non-monotonic orders; the model directly learns
good orders, without any additional annotation.
Our framework operates by generating a word at
an arbitrary position, and then recursively gener-
ating words to its left and then words to its right,
yielding a binary tree. Learning is framed as imita-
tion learning, including a coaching method which
moves from imitating an oracle to reinforcing the
policy’s own preferences. Experimental results
demonstrate that using the proposed method, it
is possible to learn policies which generate text
without pre-specifying a generation order, while
achieving competitive performance with conven-
tional left-to-right generation.

1. Introduction
Most sequence-generation models, from n-grams (Bahl
et al., 1983) to neural language models (Bengio et al., 2003)
generate sequences in a purely left-to-right, monotonic or-
der. This raises the question of whether alternative, non-
monotonic orders are worth considering (Ford et al., 2018),
especially given the success of “easy first” techniques in
natural language tagging (Tsuruoka & Tsujii, 2005), parsing
(Goldberg & Elhadad, 2010), and coreference (Stoyanov
& Eisner, 2012), which allow a model to effectively learn
their own ordering. In investigating this question, we are
solely interested in considering non-monotonic generation
that does not rely on external supervision, such as parse
trees (Eriguchi et al., 2017; Aharoni & Goldberg, 2017).

1New York University 2University of Maryland, College
Park 3Microsoft Research 4Facebook AI Research 5CIFAR
Azrieli Global Scholar. Correspondence to: Sean Welleck
<wellecks@nyu.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

are

how
?

you <end>

<end>

<end>

<end>

<end>

1

2 3

4 5

6 7

8 9

4

1

8

3

2

5

6

7

9

Figure 1. A sequence, “how are you ?”, generated by the proposed
approach trained on utterances from a dialogue dataset. The model
first generated the word “are” and then recursively generated left
and right subtrees (“how” and “you ?”, respectively) of this word.
At each production step, the model may either generate a token,
or an hendi token, which indicates that this subtree is complete.
The full generation is performed in a level-order traversal, and the
output is read off from an in-order traversal. The numbers in green
squares denote generation order (level-order); those in rounded
blue squares denote location in the final sequence (in-order).

In this paper, we propose a framework for training sequen-
tial text generation models which learn a generation order
without having to specifying an order in advance (§2). An
example generation from our model is shown in Figure 1.
We frame the learning problem as an imitation learning
problem, in which we aim to learn a generation policy that
mimics the actions of an oracle generation policy (§3). Be-
cause the tree structure is unknown, the oracle policy cannot
know the exact correct actions to take; to remedy this we pro-
pose a method called annealed coaching which can yield a
policy with learned generation orders, by gradually moving
from imitating a maximum entropy oracle to reinforcing the
policy’s own preferences. Experimental results demonstrate
that using the proposed framework, it is possible to learn
policies which generate text without pre-specifying a gener-
ation order, achieving easy first-style behavior. The policies
achieve performance metrics that are competitive with or
superior to conventional left-to-right generation in language
modeling, word reordering, and machine translation (§5).1

2. Non-Monotonic Sequence Generation
Formally, we consider the problem of sequentially gener-
ating a sequence of discrete tokens Y = (w1, . . . , wN),

1Code and trained models available at https://github.
com/wellecks/nonmonotonic_text.

ar
X

iv
:1

90
2.

02
19

2v
2

 [c
s.C

L]
 1

2
M

ay
 2

01
9 ICML19

Goal

• Learn a good order without

• specifying an order in advance.

• additional annotation

Formulation

• Generating a word at an arbitrary position, then recursively
generating words to its left and words to its right.

Non-Monotonic Sequential Text Generation

Sean Welleck 1 Kianté Brantley 2 Hal Daumé III 2 3 Kyunghyun Cho 1 4 5

Abstract
Standard sequential generation methods assume a
pre-specified generation order, such as text gener-
ation methods which generate words from left to
right. In this work, we propose a framework for
training models of text generation that operate in
non-monotonic orders; the model directly learns
good orders, without any additional annotation.
Our framework operates by generating a word at
an arbitrary position, and then recursively gener-
ating words to its left and then words to its right,
yielding a binary tree. Learning is framed as imita-
tion learning, including a coaching method which
moves from imitating an oracle to reinforcing the
policy’s own preferences. Experimental results
demonstrate that using the proposed method, it
is possible to learn policies which generate text
without pre-specifying a generation order, while
achieving competitive performance with conven-
tional left-to-right generation.

1. Introduction
Most sequence-generation models, from n-grams (Bahl
et al., 1983) to neural language models (Bengio et al., 2003)
generate sequences in a purely left-to-right, monotonic or-
der. This raises the question of whether alternative, non-
monotonic orders are worth considering (Ford et al., 2018),
especially given the success of “easy first” techniques in
natural language tagging (Tsuruoka & Tsujii, 2005), parsing
(Goldberg & Elhadad, 2010), and coreference (Stoyanov
& Eisner, 2012), which allow a model to effectively learn
their own ordering. In investigating this question, we are
solely interested in considering non-monotonic generation
that does not rely on external supervision, such as parse
trees (Eriguchi et al., 2017; Aharoni & Goldberg, 2017).

1New York University 2University of Maryland, College
Park 3Microsoft Research 4Facebook AI Research 5CIFAR
Azrieli Global Scholar. Correspondence to: Sean Welleck
<wellecks@nyu.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

are

how
?

you <end>

<end>

<end>

<end>

<end>

1

2 3

4 5

6 7

8 9

4

1

8

3

2

5

6

7

9

Figure 1. A sequence, “how are you ?”, generated by the proposed
approach trained on utterances from a dialogue dataset. The model
first generated the word “are” and then recursively generated left
and right subtrees (“how” and “you ?”, respectively) of this word.
At each production step, the model may either generate a token,
or an hendi token, which indicates that this subtree is complete.
The full generation is performed in a level-order traversal, and the
output is read off from an in-order traversal. The numbers in green
squares denote generation order (level-order); those in rounded
blue squares denote location in the final sequence (in-order).

In this paper, we propose a framework for training sequen-
tial text generation models which learn a generation order
without having to specifying an order in advance (§2). An
example generation from our model is shown in Figure 1.
We frame the learning problem as an imitation learning
problem, in which we aim to learn a generation policy that
mimics the actions of an oracle generation policy (§3). Be-
cause the tree structure is unknown, the oracle policy cannot
know the exact correct actions to take; to remedy this we pro-
pose a method called annealed coaching which can yield a
policy with learned generation orders, by gradually moving
from imitating a maximum entropy oracle to reinforcing the
policy’s own preferences. Experimental results demonstrate
that using the proposed framework, it is possible to learn
policies which generate text without pre-specifying a gener-
ation order, achieving easy first-style behavior. The policies
achieve performance metrics that are competitive with or
superior to conventional left-to-right generation in language
modeling, word reordering, and machine translation (§5).1

2. Non-Monotonic Sequence Generation
Formally, we consider the problem of sequentially gener-
ating a sequence of discrete tokens Y = (w1, . . . , wN),

1Code and trained models available at https://github.
com/wellecks/nonmonotonic_text.

ar
X

iv
:1

90
2.

02
19

2v
2

 [c
s.C

L]
 1

2
M

ay
 2

01
9

Formulation

• The full generation is performed in a level-order traversal. (green)

• The output is read off from an in-order traversal. (blue)

Non-Monotonic Sequential Text Generation

Sean Welleck 1 Kianté Brantley 2 Hal Daumé III 2 3 Kyunghyun Cho 1 4 5

Abstract
Standard sequential generation methods assume a
pre-specified generation order, such as text gener-
ation methods which generate words from left to
right. In this work, we propose a framework for
training models of text generation that operate in
non-monotonic orders; the model directly learns
good orders, without any additional annotation.
Our framework operates by generating a word at
an arbitrary position, and then recursively gener-
ating words to its left and then words to its right,
yielding a binary tree. Learning is framed as imita-
tion learning, including a coaching method which
moves from imitating an oracle to reinforcing the
policy’s own preferences. Experimental results
demonstrate that using the proposed method, it
is possible to learn policies which generate text
without pre-specifying a generation order, while
achieving competitive performance with conven-
tional left-to-right generation.

1. Introduction
Most sequence-generation models, from n-grams (Bahl
et al., 1983) to neural language models (Bengio et al., 2003)
generate sequences in a purely left-to-right, monotonic or-
der. This raises the question of whether alternative, non-
monotonic orders are worth considering (Ford et al., 2018),
especially given the success of “easy first” techniques in
natural language tagging (Tsuruoka & Tsujii, 2005), parsing
(Goldberg & Elhadad, 2010), and coreference (Stoyanov
& Eisner, 2012), which allow a model to effectively learn
their own ordering. In investigating this question, we are
solely interested in considering non-monotonic generation
that does not rely on external supervision, such as parse
trees (Eriguchi et al., 2017; Aharoni & Goldberg, 2017).

1New York University 2University of Maryland, College
Park 3Microsoft Research 4Facebook AI Research 5CIFAR
Azrieli Global Scholar. Correspondence to: Sean Welleck
<wellecks@nyu.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

are

how
?

you <end>

<end>

<end>

<end>

<end>

1

2 3

4 5

6 7

8 9

4

1

8

3

2

5

6

7

9

Figure 1. A sequence, “how are you ?”, generated by the proposed
approach trained on utterances from a dialogue dataset. The model
first generated the word “are” and then recursively generated left
and right subtrees (“how” and “you ?”, respectively) of this word.
At each production step, the model may either generate a token,
or an hendi token, which indicates that this subtree is complete.
The full generation is performed in a level-order traversal, and the
output is read off from an in-order traversal. The numbers in green
squares denote generation order (level-order); those in rounded
blue squares denote location in the final sequence (in-order).

In this paper, we propose a framework for training sequen-
tial text generation models which learn a generation order
without having to specifying an order in advance (§2). An
example generation from our model is shown in Figure 1.
We frame the learning problem as an imitation learning
problem, in which we aim to learn a generation policy that
mimics the actions of an oracle generation policy (§3). Be-
cause the tree structure is unknown, the oracle policy cannot
know the exact correct actions to take; to remedy this we pro-
pose a method called annealed coaching which can yield a
policy with learned generation orders, by gradually moving
from imitating a maximum entropy oracle to reinforcing the
policy’s own preferences. Experimental results demonstrate
that using the proposed framework, it is possible to learn
policies which generate text without pre-specifying a gener-
ation order, achieving easy first-style behavior. The policies
achieve performance metrics that are competitive with or
superior to conventional left-to-right generation in language
modeling, word reordering, and machine translation (§5).1

2. Non-Monotonic Sequence Generation
Formally, we consider the problem of sequentially gener-
ating a sequence of discrete tokens Y = (w1, . . . , wN),

1Code and trained models available at https://github.
com/wellecks/nonmonotonic_text.

ar
X

iv
:1

90
2.

02
19

2v
2

 [c
s.C

L]
 1

2
M

ay
 2

01
9

Imitation Learning
• Learn a generation policy that mimics the actions of an

oracle generation policy

• Oracle policies

• Uniform oracle: similar to quick-sort

• Coaching oracle: reinforce the policy’s own
preferences

• Annealed coaching oracle:

Non-Monotonic Sequential Text Generation

and forces an hendi output if there are no more words to pro-
duce. This is guaranteed to always generate Y , regardless
of how the random coin flips come up.

When an action a is chosen, at st, this “splits” the
sub-sequence Yt = (w0

1, . . . , w
0
N 0) into left and right

sub-sequences,
 �
Y t = (w0

1, . . . , w
0
i�1) and

�!
Y t =

(w0
i+1, . . . , wN), where i is the index of a in Yt. (This

split may not be unique due to duplicated words in Yt, in
which case we choose a valid split arbitrarily.) These are
“passed” to the left and right child nodes, respectively.

There are many possible oracle policies, and each of them is
characterized by how pa in Eq. (3) is defined. Specifically,
we propose three variants.

Uniform Oracle. Motivated by Welleck et al. (2018) who
applied learning-to-search to the problem of multiset pre-
diction, we design a uniform oracle ⇡

⇤
uniform. This oracle

treats all possible generation orders that lead to the target
sequence Y as equally likely, without preferring any specific
set of orders. Formally, ⇡⇤

uniform gives uniform probabilities
pa = 1/n for all words in Yt where n is the number of
unique words in Yt. (Daumé (2009) used a similar oracle
for unsupervised structured prediction, which has a similar
non-deterministic oracle complication.)

Coaching Oracle. An issue with the uniform oracle is
that it does not prefer any specific set of generation orders,
making it difficult for a parameterized policy to imitate.
This gap has been noticed as a factor behind the difficulty in
learning-to-search by He et al. (2012), who propose the idea
of coaching. In coaching, the oracle takes into account the
preference of a parameterized policy in order to facilitate its
learning. Motivated by this, we design a coaching oracle as
the product of the uniform oracle and current policy ⇡:

⇡
⇤
coaching(a|s) / ⇡

⇤
uniform(a|s) ⇡(a|s) (4)

This coaching oracle ensures that no invalid action is as-
signed any probability, while preferring actions that are
preferred by the current parameterized policy, reinforcing
the selection by the current policy if it is valid.

Annealed Coaching Oracle. The multiplicative nature of
the coaching oracle gives rise to an issue, especially in the
early stage of learning, as it does not encourage learning to
explore a diverse set of generation orders. We thus design
a mixture of the uniform and coaching policies, which we
refer to as an annealed coaching oracle:

⇡
⇤
annealed(a|s) = �⇡

⇤
uniform(a|s) + (1� �)⇡⇤

coaching(a|s) (5)

We anneal � from 1 to 0 over learning, on a linear schedule.

Deterministic Left-to-Right Oracle. In addition to the
proposed oracle policies above, we also experiment with a
deterministic oracle that corresponds to generating the target
sequence from left to right: ⇡⇤

left-right always selects the first
un-produced word as the correct action, with probability
1. When both roll-in and oracle policies are set to the left-
to-right oracle ⇡

⇤
left-right, the proposed approach recovers to

maximum likelihood learning of an autoregressive sequence
model, which is de facto standard in neural sequence model-
ing. In other words, supervised learning of an autoregressive
sequence model is a special case of the proposed approach.

4. Neural Net Policy Structure
We use a neural network to implement the proposed binary
tree generating policy, as it has been shown to encode a
variable-sized input and predict a structured output effec-
tively (Cleeremans et al., 1989; Forcada & Ñeco, 1997;
Sutskever et al., 2014; Cho et al., 2014b; Tai et al., 2015;
Bronstein et al., 2017; Battaglia et al., 2018). This neural
network takes as input a partial binary tree, or equivalently a
sequence of nodes in this partial tree by level-order traversal,
and outputs a distribution over the action set Ṽ .

LSTM Policy. The first policy we consider is imple-
mented as a recurrent network with long short-term memory
(LSTM) units (Hochreiter & Schmidhuber, 1997) by con-
sidering the partial binary tree as a flat sequence of nodes
in a level-order traversal (a1, . . . , at). The recurrent net-
work encodes the sequence into a vector ht and computes a
categorical distribution over the action set:

⇡(a|st) / exp(u>
a ht + ba) (6)

where ua and ba are weights and bias associated with a.

This LSTM structure relies entirely on the linearization of a
partial binary tree, and minimally takes advantage of the ac-
tual tree structure or the surface order. It may be possible to
exploit the tree structure more thoroughly using a recurrent
architecture that is designed to encode a tree (Zhang et al.,
2015; Alvarez-Melis & Jaakkola, 2017; Dyer et al., 2015;
Bowman et al., 2016), which we leave for future investiga-
tion. We did experiment with additionally conditioning ⇡’s
action distribution on the parent of the current node in the
tree, but preliminary experiments did not show gains.

Transformer Policy. We additionally implement a policy
using a Transformer (Vaswani et al., 2017). The level-order
sequence a1, ..., at is again summarized by a vector ht, here
computed using a multi-head attention mechanism. As in the
LSTM policy, the vector ht is used to compute a categorical
distribution over the action set (6).

Auxiliary hendi Prediction. We also consider separating
the action prediction into token (ai 2 V) prediction and

Non-Monotonic Sequential Text Generation

and forces an hendi output if there are no more words to pro-
duce. This is guaranteed to always generate Y , regardless
of how the random coin flips come up.

When an action a is chosen, at st, this “splits” the
sub-sequence Yt = (w0

1, . . . , w
0
N 0) into left and right

sub-sequences,
 �
Y t = (w0

1, . . . , w
0
i�1) and

�!
Y t =

(w0
i+1, . . . , wN), where i is the index of a in Yt. (This

split may not be unique due to duplicated words in Yt, in
which case we choose a valid split arbitrarily.) These are
“passed” to the left and right child nodes, respectively.

There are many possible oracle policies, and each of them is
characterized by how pa in Eq. (3) is defined. Specifically,
we propose three variants.

Uniform Oracle. Motivated by Welleck et al. (2018) who
applied learning-to-search to the problem of multiset pre-
diction, we design a uniform oracle ⇡

⇤
uniform. This oracle

treats all possible generation orders that lead to the target
sequence Y as equally likely, without preferring any specific
set of orders. Formally, ⇡⇤

uniform gives uniform probabilities
pa = 1/n for all words in Yt where n is the number of
unique words in Yt. (Daumé (2009) used a similar oracle
for unsupervised structured prediction, which has a similar
non-deterministic oracle complication.)

Coaching Oracle. An issue with the uniform oracle is
that it does not prefer any specific set of generation orders,
making it difficult for a parameterized policy to imitate.
This gap has been noticed as a factor behind the difficulty in
learning-to-search by He et al. (2012), who propose the idea
of coaching. In coaching, the oracle takes into account the
preference of a parameterized policy in order to facilitate its
learning. Motivated by this, we design a coaching oracle as
the product of the uniform oracle and current policy ⇡:

⇡
⇤
coaching(a|s) / ⇡

⇤
uniform(a|s) ⇡(a|s) (4)

This coaching oracle ensures that no invalid action is as-
signed any probability, while preferring actions that are
preferred by the current parameterized policy, reinforcing
the selection by the current policy if it is valid.

Annealed Coaching Oracle. The multiplicative nature of
the coaching oracle gives rise to an issue, especially in the
early stage of learning, as it does not encourage learning to
explore a diverse set of generation orders. We thus design
a mixture of the uniform and coaching policies, which we
refer to as an annealed coaching oracle:

⇡
⇤
annealed(a|s) = �⇡

⇤
uniform(a|s) + (1� �)⇡⇤

coaching(a|s) (5)

We anneal � from 1 to 0 over learning, on a linear schedule.

Deterministic Left-to-Right Oracle. In addition to the
proposed oracle policies above, we also experiment with a
deterministic oracle that corresponds to generating the target
sequence from left to right: ⇡⇤

left-right always selects the first
un-produced word as the correct action, with probability
1. When both roll-in and oracle policies are set to the left-
to-right oracle ⇡

⇤
left-right, the proposed approach recovers to

maximum likelihood learning of an autoregressive sequence
model, which is de facto standard in neural sequence model-
ing. In other words, supervised learning of an autoregressive
sequence model is a special case of the proposed approach.

4. Neural Net Policy Structure
We use a neural network to implement the proposed binary
tree generating policy, as it has been shown to encode a
variable-sized input and predict a structured output effec-
tively (Cleeremans et al., 1989; Forcada & Ñeco, 1997;
Sutskever et al., 2014; Cho et al., 2014b; Tai et al., 2015;
Bronstein et al., 2017; Battaglia et al., 2018). This neural
network takes as input a partial binary tree, or equivalently a
sequence of nodes in this partial tree by level-order traversal,
and outputs a distribution over the action set Ṽ .

LSTM Policy. The first policy we consider is imple-
mented as a recurrent network with long short-term memory
(LSTM) units (Hochreiter & Schmidhuber, 1997) by con-
sidering the partial binary tree as a flat sequence of nodes
in a level-order traversal (a1, . . . , at). The recurrent net-
work encodes the sequence into a vector ht and computes a
categorical distribution over the action set:

⇡(a|st) / exp(u>
a ht + ba) (6)

where ua and ba are weights and bias associated with a.

This LSTM structure relies entirely on the linearization of a
partial binary tree, and minimally takes advantage of the ac-
tual tree structure or the surface order. It may be possible to
exploit the tree structure more thoroughly using a recurrent
architecture that is designed to encode a tree (Zhang et al.,
2015; Alvarez-Melis & Jaakkola, 2017; Dyer et al., 2015;
Bowman et al., 2016), which we leave for future investiga-
tion. We did experiment with additionally conditioning ⇡’s
action distribution on the parent of the current node in the
tree, but preliminary experiments did not show gains.

Transformer Policy. We additionally implement a policy
using a Transformer (Vaswani et al., 2017). The level-order
sequence a1, ..., at is again summarized by a vector ht, here
computed using a multi-head attention mechanism. As in the
LSTM policy, the vector ht is used to compute a categorical
distribution over the action set (6).

Auxiliary hendi Prediction. We also consider separating
the action prediction into token (ai 2 V) prediction and

Imitation Learning

• Annealed coaching oracle

• Random oracle encourages exploration

• Reinforcement leads to a specific generation order

• A special case for comparison

• Deterministic Left-to-Right Oracle (standard order)

Policy Networks

• Partial binary tee is considered as a flat sequence of
nodes in a level-order traversal.

• Essentially, still a sequence model

• Transformer, LSTM can be applied.

Experiments
• Language Modeling on Persona-Chat dataset

Non-Monotonic Sequential Text Generation

hendi prediction. The policy under this view consists of a
categorical distribution over tokens (6) as well as an hendi
predictor which parameterizes a Bernoulli distribution,
⇡end(hendi|st) / �(u>

e ht + be), where ⇡end(hendi = 1|st)
means at is hendi, and at is determined by ⇡ according to
(6) otherwise. At test time, we threshold the predicted hendi
probability at a threshold ⌧ . In our experiments, we only
use this approach with the Transformer policy (§5.4).

4.1. Conditional Sentence Generation

An advantage of using a neural network to implement the
proposed policy is that it can be easily conditioned on
an extra context. It allows us to build a conditional non-
monotonic sequence generator that can for instance be used
for machine translation, image caption generation, speech
recognition and generally multimedia description genera-
tion (Cho et al., 2015). To do so, we assume that a condition-
ing input (e.g. an image or sentence) X can be represented
as a set of denc-dimensional context vectors, obtained with
a learned encoder function f

enc(X) whose parameters are
learned jointly with the policy’s.

For word-reordering experiments §5.3, the encoder outputs
a single vector which is used to initialize the LSTM policy’s
state h0. In the machine translation experiments §5.4, the
Transformer encoder outputs |X| vectors, H 2 R|X|⇥denc ,
which are used as input to a decoder (i.e. policy) attention
function; see (Vaswani et al., 2017) for further details.

5. Experimental Results
In this section we experiment with our non-monotone se-
quence generation model across four tasks. The first two are
unconditional generation tasks: language modeling (§5.1)
and out-of-order sentence completion (§5.2). Our analysis
in these tasks is primarily qualitative: we seek to understand
what the non-monotone policy is learning and how it com-
pares to a left-to-right model. The second two tasks are con-
ditional generation tasks, which generate output sequences
based on some given input sequence: word reordering (§5.3)
and machine translation (§5.4).

5.1. Language Modeling

We begin by considering generating samples from our
model, trained as a language model. Our goal in this section
is to qualitatively understand what our model has learned.
It would be natural also to evaluate our model according to
a score like perplexity. Unfortunately, unlike conventional
autoregressive language models, it is intractable to compute
the probability of a given sequence in the non-monotonic
generation setting, as it requires us to marginalize out all
possible binary trees that lead to the sequence.

Oracle %Novel %Unique Avg.
Tokens

Avg.
Span

BLEU

left-right 17.8 97.0 11.9 1.0 47.0
uniform 98.3 99.9 13.0 1.43 40.0
annealed 93.1 98.2 10.6 1.31 56.2

Validation 97.0 100 12.1 - -

Table 1. Statistics computed over 10,000 sampled sentences (in-
order traversals of sampled trees with hendi tokens removed) for
policies trained on Persona-Chat. A sample is novel when it is not
in the training set. Percent unique is the cardinality of the set of
sampled sentences divided by the number of sampled sentences.

⇡
⇤ Samples

le
ft-

rig
ht

� hey there , i should be !
� not much fun . what are you doing ?
� not . not sure if you .
� i love to always get my nails done .
� sure , i can see your eye underwater

while riding a footwork .

un
ifo

rm

� i just got off work .
� yes but believe any karma , it is .
� i bet you are . i read most of good tvs

on that horror out . cool .
� sometimes , for only time i practice

professional baseball .
� i am rich , but i am a policeman .

an
ne

al
ed

� i do , though . do you ?
� i like iguanas . i have a snake . i wish

i could win . you ?
� i am a homebody .
� i care sometimes . i also snowboard .
� i am doing okay . just relaxing ,

and you ?

Table 2. Samples from unconditional generation policies trained
on Persona-Chat for each training oracle. The first sample’s under-
lying tree is shown. See Appendix A.2 for more samples.

Dataset. We use a dataset derived from the Persona-Chat
(Zhang et al., 2018) dialogue dataset, which consists of
multi-turn dialogues between two agents. Our dataset here
consists of all unique persona sentences and utterances
in Persona-Chat. We derive the examples from the same
train, validation, and test splits as Persona-Chat, resulting in
133,176 train, 16,181 validation, and 15,608 test examples.
Sentences are tokenized by splitting on spaces and punctua-
tion. The training set has a vocabulary size of 20,090 and
an average of 12.0 tokens per example.

Model. We use a uni-directional LSTM that has 2 layers
of 1024 LSTM units. See Appendix A.2 for more details.

Basic Statistics. We draw 10,000 samples from each
trained policy (by varying the oracle) and analyze the results
using the following metrics: percentage of novel sentences,
percentage of unique, average number of tokens, average

Experiments

• By POS analysis on different levels of the trees

• Punctuation-first => easy-first

• Pronoun before noun and verb => like dependency tree

Non-Monotonic Sequential Text Generation

Figure 5. Unconditional samples from a policy trained with ⇡
⇤
annealed.

Experiments
• Machine translation

Non-Monotonic Sequential Text Generation

Validation Test
Oracle BLEU (BP) Meteor YiSi Ribes BLEU (BP) Meteor YiSi Ribes
left-right 32.30 (0.95) 31.96 69.41 84.80 28.00 (1.00) 30.10 65.22 82.29

uniform 24.50 (0.84) 27.98 66.40 82.66 21.40 (0.86) 26.40 62.41 80.00

annealed 26.80 (0.88) 29.67 67.88 83.61 23.30 (0.91) 27.96 63.38 80.91
+tree-encoding 28.00 (0.86) 30.15 68.43 84.36 24.30 (0.91) 28.59 63.87 81.64
+hendi-tuning 29.10 (0.99) 31.00 68.81 83.51 24.60 (1.00) 29.30 64.18 80.53

Table 5. Results of machine translation experiments for different training oracles across four different evaluation metrics.

Compared to the best non-monotonic model, the left-to-
right model has superior performance according to BLEU.
As previously observed (Callison-Burch et al., 2006; Wilks,
2008), BLEU tends to strongly prefer models with left-to-
right language models because it focuses on getting a large
number of 4-grams correct. The other three measures of
translation quality are significantly less sensitive to exact
word order and focus more on whether the “semantics” is
preserved (for varying definitions of “semantics”). For those,
we see that the best annealed model is more competitive,
typically within one percentage point of left-to-right.

6. Related Work
Arguably one of the most successful approaches for gen-
erating discrete sequences, or sentences, is neural autore-
gressive modeling (Sutskever et al., 2011; Tomas, 2012). It
has become de facto standard in machine translation (Cho
et al., 2014a; Sutskever et al., 2014) and is widely studied
for dialogue response generation (Vinyals & Le, 2015) as
well as speech recognition (Chorowski et al., 2015). On
the other hand, recent works have shown that it is possi-
ble to generate a sequence of discrete tokens in parallel
by capturing strong dependencies among the tokens in a
non-autoregressive way (Gu et al., 2017; Lee et al., 2018;
Oord et al., 2017). Stern et al. (2018) and Wang et al. (2018)
proposed to mix in these two paradigms and build a semi-
autoregressive sequence generator, while largely sticking to
left-to-right generation. Our proposal radically departs from
these conventional approaches by building an algorithm that
automatically captures a distinct generation order.

In (neural) language modeling, there is a long tradition of
modeling the probability of a sequence as a tree or directed
graph. For example, Emami & Jelinek (2005) proposed
to factorize the probability over a sentence following its
syntactic structure and train a neural network to model con-
ditional distributions, which was followed more recently by
Zhang et al. (2015) and by Dyer et al. (2016). This approach
was applied to neural machine translation by Eriguchi et al.
(2017) and Aharoni & Goldberg (2017). In all cases, these
approaches require the availability of the ground-truth parse
of a sentence or access to an external parser during training
or inference time. This is unlike the proposed approach

which does not require any such extra annotation or tool and
learns to sequentially generate a sequence in an automati-
cally determined non-monotonic order.

7. Conclusion, Limitations & Future Work
We described an approach to generating text in non-
monotonic orders that fall out naturally as the result of
learning. We explored several different oracle models for
imitation, and found that an annealed “coaching” oracle
performed best, and learned a “best-first” strategy for lan-
guage modeling, where it appears to significantly outper-
form alternatives. On a word re-ordering task, we found that
this approach essentially ties left-to-right decoding, a rather
promising finding given the decades of work on left-to-right
models. In a machine translation setting, we found that the
model learns to translate in a way that tends to preserve
meaning but not n-grams.

There are several potentially interesting avenues for future
work. One is to solve the “learning to stop” problem directly,
rather than through an after-the-fact tuning step. Another is
to better understand how to construct an oracle that gener-
alizes well after mistakes have been made, in order to train
off of the gold path(s).

Moreover, the proposed formulation of sequence generation
by tree generation is limited to binary trees. It is possible to
extend the proposed approach to n-ary trees by designing a
policy to output up to n+ 1 decisions at each node, leading
to up to n child nodes. This would bring a set of generation
orders, that could be captured by the proposed approach,
which includes all projective dependency parses. A new
oracle must be designed for n-ary trees, and we leave this
as a follow-up work.

Finally, although the proposed approach indeed learns to
sequentially generate a sequence in a non-monotonic or-
der, it cannot consider all possible orders. It is due to the
constraint that there cannot be any crossing of two edges
when the nodes are arranged on a line following the inorder
traversal, which we refer to as projective generation. Ex-
tending the proposed approach to non-projective generation,
which we leave as future work, would expand the number
of generation orders considered during learning.

• BLEU focuses on getting a large number of 4-grams correct

• The other three measures are less sensitive to exact word order and focus more on semantics.

Limitations

• Binary-tree => N-ary tree

• Only produce a subset of all possible generation orders

• Projective generation, no crossing of two edges when
nodes are lined up following the ignorer traversal.

Insertion-based Decoding with automatically

Inferred Generation Order

Jiatao Gu
†
, Qi Liu

†
and Kyunghyun Cho

†‡

†Facebook AI Research
‡New York University, CIFAR Azrieli Global Scholar

†
{jgu, qiliu, kyunghyuncho}@fb.com

Abstract

Conventional neural autoregressive decod-
ing commonly assumes a fixed left-to-right
generation order, which may be sub-optimal.
In this work, we propose a novel decod-
ing algorithm – InDIGO – which supports
flexible sequence generation in arbitrary or-
ders through insertion operations. We extend
Transformer, a state-of-the-art sequence gen-
eration model, to efficiently implement the
proposed approach, enabling it to be trained
with either a pre-defined generation order or
adaptive orders obtained from beam-search.
Experiments on four real-world tasks, in-
cluding word order recovery, machine trans-
lation, image caption and code generation,
demonstrate that our algorithm can generate
sequences following arbitrary orders, while
achieving competitive or even better perfor-
mance compared to the conventional left-to-
right generation. The generated sequences
show that InDIGO adopts adaptive genera-
tion orders based on input information.

1 Introduction

Neural autoregressive models have become the de

facto standard in a wide range of sequence genera-
tion tasks, such as machine translation (Bahdanau
et al., 2014), summarization (Rush et al., 2015) and
dialogue systems (Vinyals and Le, 2015). In these
studies, a sequence is modeled autoregressively
with the left-to-right generation order, which raises
the question of whether generation in an arbitrary
order is worth considering (Vinyals et al., 2015a;
Ford et al., 2018). Nevertheless, previous studies
on generation orders mostly resort to a fixed set of
generation orders, showing particular choices of
ordering are helpful (Wu et al., 2018; Ford et al.,
2018; Mehri and Sigal, 2018), without providing
an efficient algorithm for finding adaptive genera-
tion orders, or restrict the problem scope to n-gram
segment generation (Vinyals et al., 2015a).

<S> </S> dream

<S> </S> dream I

<S> </S> dream I a

<S> </S> dream I a have

<S> </S>dreamI have a

0 2 1

0

0

0

23

4

5

3

4

1

1

1

2

3 2

insert to right

insert to left

Figure 1: An example of InDIGO. At each step,
we simultaneously predict the next token and its
(relative) position to be inserted. The final output
sequence is obtained by mapping the words based
on their positions.

In this paper, we propose a novel decoding al-
gorithm, Insertion-based Decoding with Inferred

Generation Order (InDIGO), which models gener-
ation orders as latent variables and automatically
infers the generation orders by simultaneously pre-
dicting a word and its position to be inserted at
each decoding step. Given that absolute positions
are unknown before generating the whole sequence,
we use a relative-position-based representation to
capture generation orders. We show that decoding
consists of a series of insertion operations with a
demonstration shown in Fig. 1.

We extend Transformer (Vaswani et al., 2017)
for supporting insertion operations, where the gen-
eration order is directly captured as relative po-
sitions through self-attention inspired by (Shaw
et al., 2018). For learning, we maximize the evi-
dence lower-bound (ELBO) of the maximum like-
lihood objective, and study two approximate pos-
terior distributions of generation orders based on
a pre-defined generation order and adaptive orders
obtained from beam-search, respectively.

Experimental results on word order recovery, ma-
chine translation, code generation and image cap-

ar
X

iv
:1

90
2.

01
37

0v
2

 [c
s.C

L]
 2

8
Fe

b
20

19

Goal
• How can we decode a sequence in its best order?

Model Design

• Insertion-based (again)

• Joint prediction of position and token

• The problem of absolute position

• Changes over decoding time (recomputing is costly!)

Relative Positions
step t = 3. It is however inefficient to model such
explicit positions using a single neural network
without recomputing the hidden states for the en-
tire partial sequence, as some positions are changed
at every step (as shown in Fig. 1).

Relative Positions We propose using relative-
position representations rt0:t instead of absolute
positions z

t
0:t. We use a ternary vector rt

i
2

{�1, 0, 1}t+1 as the relative-position representa-
tion for z

t

i
. The j-th element of rt

i
is defined as:

rti,j =

8
><

>:

�1 z
t

j
> z

t

i
(left)

0 z
t

j
= z

t

i
(middle)

1 z
t

j
< z

t

i
(right)

, (3)

where the elements of rt
i

show the relative po-
sitions with respect to all the other words in
the partial sequence at step t. We use a matrix
R

t =
⇥
rt0, r

t
1, ..., r

t
t

⇤
to show the relative-position

representations of all the words in the sequence.
The relative-position representation can always be
mapped back to the absolute position z

t

i
by:

z
t

i =
tX

j=0

max(0, rti,j) (4)

One of the biggest advantages for using such vector-
based representations is that at each step, updating
the relative-position representations is simply ex-

tending the relative-position matrix R
t with the

next predicted relative position, because the (left,
middle, right) relations described in Eq. (3) stay
unchanged once they are created. Thus, we update
R

t as follows:

R
t+1 =

2

6664

rt+1
t+1,0

R
t

...
rt+1
t+1,t

�rt+1
t+1,0 · · · �rt+1

t+1,t 0

3

7775

(5)
where we use rt+1

t+1 to represent the relative position
at step t+1. This append-only property enables our
method to reuse the previous hidden states without
recomputing the hidden states at each step. For
simplicity, the superscript of r is omitted from now
on without causing conflicts.

3.3 Insertion-based Decoding

Given a partial sequence y0:t and its correspond-
ing relative-position representations r0:t, not all
of the 3t+2 possible vectors are valid for the next

Algorithm 1 Insertion-based Decoding

Initialize: y = (hsi, h/si), R =
h

0 1
�1 0

i
, t = 1

repeat

Predict the next word yt+1 based on y, R.
if yt+1 is heodi then

break
end if

Choose an existing word yk 2 y;
Choose the left or right (s) of yk to insert;
Obtain the next position rt+1 with k, s (Eq. (6)).
Update R by appending rt+1 (Eq. (5)).
Update y by appending yt+1

Update t = t + 1
until Reach the maximum length
Map back to absolute positions ⇡ (Eq. (4))
Reorder y: yzi = yi 8zi 2 ⇡, i 2 [0, t]

relative-position representation, rt+1. Only these
vectors corresponding to insertion operations sat-
isfy Eq. (4). In Algorithm 1, we describe an
insertion-based decoding framework based on this
observation. The next word yt+1 is predicted based
on y0:t and r0:t. We then choose an existing word
yk (0  k  t)) from y0:t and insert yt+1 to its
left or right. As a result, the next position rt+1 is
determined by

rt+1,j =

(
s j = k

rk,j j 6= k
, 8j 2 [0, t] (6)

where s = �1 if yt+1 is on the left of yk, and
s = 1 otherwise. Finally, we use rt+1 to update
the relative-position matrix R as shown in Eq. (5).

4 Model

We present Transformer-InDIGO, an extension of
Transformer (Vaswani et al., 2017), supporting
insertion-based decoding. To the best of our knowl-
edge, Transformer-InDIGO is the first probabilistic
model that takes generation orders for autoregres-
sive decoding into account. The overall framework
is shown in Fig. 2.

4.1 Network Design

We extend the decoder of Transformer with relative-
position-based self-attention, joint word & position
prediction and position updating modules.

Self-Attention One of the major challenges that
prevents the vanilla Transformer from generating
sequences following arbitrary orders is that the
absolute-position-based positional encodings are

step t = 3. It is however inefficient to model such
explicit positions using a single neural network
without recomputing the hidden states for the en-
tire partial sequence, as some positions are changed
at every step (as shown in Fig. 1).

Relative Positions We propose using relative-
position representations rt0:t instead of absolute
positions z

t
0:t. We use a ternary vector rt

i
2

{�1, 0, 1}t+1 as the relative-position representa-
tion for z

t

i
. The j-th element of rt

i
is defined as:

rti,j =

8
><

>:

�1 z
t

j
> z

t

i
(left)

0 z
t

j
= z

t

i
(middle)

1 z
t

j
< z

t

i
(right)

, (3)

where the elements of rt
i

show the relative po-
sitions with respect to all the other words in
the partial sequence at step t. We use a matrix
R

t =
⇥
rt0, r

t
1, ..., r

t
t

⇤
to show the relative-position

representations of all the words in the sequence.
The relative-position representation can always be
mapped back to the absolute position z

t

i
by:

z
t

i =
tX

j=0

max(0, rti,j) (4)

One of the biggest advantages for using such vector-
based representations is that at each step, updating
the relative-position representations is simply ex-

tending the relative-position matrix R
t with the

next predicted relative position, because the (left,
middle, right) relations described in Eq. (3) stay
unchanged once they are created. Thus, we update
R

t as follows:

R
t+1 =

2

6664

rt+1
t+1,0

R
t

...
rt+1
t+1,t

�rt+1
t+1,0 · · · �rt+1

t+1,t 0

3

7775

(5)
where we use rt+1

t+1 to represent the relative position
at step t+1. This append-only property enables our
method to reuse the previous hidden states without
recomputing the hidden states at each step. For
simplicity, the superscript of r is omitted from now
on without causing conflicts.

3.3 Insertion-based Decoding

Given a partial sequence y0:t and its correspond-
ing relative-position representations r0:t, not all
of the 3t+2 possible vectors are valid for the next

Algorithm 1 Insertion-based Decoding

Initialize: y = (hsi, h/si), R =
h

0 1
�1 0

i
, t = 1

repeat

Predict the next word yt+1 based on y, R.
if yt+1 is heodi then

break
end if

Choose an existing word yk 2 y;
Choose the left or right (s) of yk to insert;
Obtain the next position rt+1 with k, s (Eq. (6)).
Update R by appending rt+1 (Eq. (5)).
Update y by appending yt+1

Update t = t + 1
until Reach the maximum length
Map back to absolute positions ⇡ (Eq. (4))
Reorder y: yzi = yi 8zi 2 ⇡, i 2 [0, t]

relative-position representation, rt+1. Only these
vectors corresponding to insertion operations sat-
isfy Eq. (4). In Algorithm 1, we describe an
insertion-based decoding framework based on this
observation. The next word yt+1 is predicted based
on y0:t and r0:t. We then choose an existing word
yk (0  k  t)) from y0:t and insert yt+1 to its
left or right. As a result, the next position rt+1 is
determined by

rt+1,j =

(
s j = k

rk,j j 6= k
, 8j 2 [0, t] (6)

where s = �1 if yt+1 is on the left of yk, and
s = 1 otherwise. Finally, we use rt+1 to update
the relative-position matrix R as shown in Eq. (5).

4 Model

We present Transformer-InDIGO, an extension of
Transformer (Vaswani et al., 2017), supporting
insertion-based decoding. To the best of our knowl-
edge, Transformer-InDIGO is the first probabilistic
model that takes generation orders for autoregres-
sive decoding into account. The overall framework
is shown in Fig. 2.

4.1 Network Design

We extend the decoder of Transformer with relative-
position-based self-attention, joint word & position
prediction and position updating modules.

Self-Attention One of the major challenges that
prevents the vanilla Transformer from generating
sequences following arbitrary orders is that the
absolute-position-based positional encodings are

Decoding

<S> </S> dream I

a

Relative Positions

Transformer-Decoder

R L R RL L

Causal
Self-attention

Update

a

0 -1 +1

R key for insert at right L key for insert at left <S> </S> dream I a have

0 5 4 1 23

<S> </S>dreamI ahave

sort

ht
<latexit sha1_base64="bfTi8g3GUSdgtNjKa2Fy0oX2GsY=">AAAB6nicbVA9SwNBEJ2LXzF+RQUbm8UgWIU7m1gGbSwTNB+QHHFvs5cs2ds7dueEcOQn2FgoYusvsrPxt7j5KDTxwcDjvRlm5gWJFAZd98vJra1vbG7ltws7u3v7B8XDo6aJU814g8Uy1u2AGi6F4g0UKHk70ZxGgeStYHQz9VuPXBsRq3scJ9yP6ECJUDCKVrob9rBXLLlldwaySrwFKVVP6t8PAFDrFT+7/ZilEVfIJDWm47kJ+hnVKJjkk0I3NTyhbEQHvGOpohE3fjY7dULOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PsTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOwYbgLb+8SpqXZc8te3WbxjXMkYdTOIML8KACVbiFGjSAwQCe4AVeHek8O2/O+7w15yxmjuEPnI8f5jSPtA==</latexit><latexit sha1_base64="MUCBKc2QkRNerSU/qY62O5UdoSc=">AAAB6nicbVA9SwNBEJ2LXzF+RQUbm8UgWIU7Gy1DbCwTNImQHGFvs5cs2ds7dueEcOQn2FgoYmvrv/AX2Nn4W9x8FJr4YODx3gwz84JECoOu++XkVlbX1jfym4Wt7Z3dveL+QdPEqWa8wWIZ67uAGi6F4g0UKPldojmNAslbwfBq4rfuuTYiVrc4Srgf0b4SoWAUrXQz6GK3WHLL7hRkmXhzUqoc1b/Fe/Wj1i1+dnoxSyOukElqTNtzE/QzqlEwyceFTmp4QtmQ9nnbUkUjbvxseuqYnFqlR8JY21JIpurviYxGxoyiwHZGFAdm0ZuI/3ntFMNLPxMqSZErNlsUppJgTCZ/k57QnKEcWUKZFvZWwgZUU4Y2nYINwVt8eZk0z8ueW/bqNo0qzJCHYziBM/DgAipwDTVoAIM+PMATPDvSeXRenNdZa86ZzxzCHzhvPzeEkXA=</latexit><latexit sha1_base64="MUCBKc2QkRNerSU/qY62O5UdoSc=">AAAB6nicbVA9SwNBEJ2LXzF+RQUbm8UgWIU7Gy1DbCwTNImQHGFvs5cs2ds7dueEcOQn2FgoYmvrv/AX2Nn4W9x8FJr4YODx3gwz84JECoOu++XkVlbX1jfym4Wt7Z3dveL+QdPEqWa8wWIZ67uAGi6F4g0UKPldojmNAslbwfBq4rfuuTYiVrc4Srgf0b4SoWAUrXQz6GK3WHLL7hRkmXhzUqoc1b/Fe/Wj1i1+dnoxSyOukElqTNtzE/QzqlEwyceFTmp4QtmQ9nnbUkUjbvxseuqYnFqlR8JY21JIpurviYxGxoyiwHZGFAdm0ZuI/3ntFMNLPxMqSZErNlsUppJgTCZ/k57QnKEcWUKZFvZWwgZUU4Y2nYINwVt8eZk0z8ueW/bqNo0qzJCHYziBM/DgAipwDTVoAIM+PMATPDvSeXRenNdZa86ZzxzCHzhvPzeEkXA=</latexit><latexit sha1_base64="O7FfWHYl4nxml/caqTcK6XxGg/w=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmIzGxInc2WhJtLDEKksCF7C17sGFv97I7Z0Iu/AQbC42x9RfZ+W9c4AoFXzLJy3szmZkXpVJY9P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVmeG8RbTUptORC2XQvEWCpS8kxpOk0jyx2h8M/Mfn7ixQqsHnKQ8TOhQiVgwik66H/WxX635dX8OskqCgtSgQLNf/eoNNMsSrpBJam038FMMc2pQMMmnlV5meUrZmA5511FFE27DfH7qlJw5ZUBibVwpJHP190ROE2snSeQ6E4oju+zNxP+8bobxVZgLlWbIFVssijNJUJPZ32QgDGcoJ45QZoS7lbARNZShS6fiQgiWX14l7Yt64NeDO7/WuC7iKMMJnMI5BHAJDbiFJrSAwRCe4RXePOm9eO/ex6K15BUzx/AH3ucPV5yNzw==</latexit>

C
<latexit sha1_base64="qitYjHnTvWLLMhbcMUcBblbEEo8=">AAAB6HicbZC7SwNBEMbnfMb4ilraLAbBKtzZaCMG01gmYB6QHGFvM5es2ds7dveEcATsbSwUsfWfsbfzv3HzKDTxg4Uf3zfDzkyQCK6N6347K6tr6xubua389s7u3n7h4LCh41QxrLNYxKoVUI2CS6wbbgS2EoU0CgQ2g2FlkjcfUGkeyzszStCPaF/ykDNqrFWrdAtFt+RORZbBm0Px+jN/9QgA1W7hq9OLWRqhNExQrduemxg/o8pwJnCc76QaE8qGtI9ti5JGqP1sOuiYnFqnR8JY2ScNmbq/OzIaaT2KAlsZUTPQi9nE/C9rpya89DMuk9SgZLOPwlQQE5PJ1qTHFTIjRhYoU9zOStiAKsqMvU3eHsFbXHkZGuclzy15NbdYvoGZcnAMJ3AGHlxAGW6hCnVggPAEL/Dq3DvPzpvzPitdceY9R/BHzscPA+yOkA==</latexit><latexit sha1_base64="EQAAM1j/Ie8eqC8qE7NRLV0Spmg=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIVdG23EYBrLBMwFkiXMTs4mY2Znl5lZISx5AhsLRWz1YextxLdxcik08YeBj/8/hznnBAlnSrvut5VbWV1b38hv2lvbO7t7hf2DhopTSbFOYx7LVkAUciawrpnm2Eokkijg2AyGlUnevEepWCxu9ShBPyJ9wUJGiTZWrdItFN2SO5WzDN4cilcf9mXy/mVXu4XPTi+maYRCU06Uantuov2MSM0ox7HdSRUmhA5JH9sGBYlQ+dl00LFzYpyeE8bSPKGdqfu7IyORUqMoMJUR0QO1mE3M/7J2qsMLP2MiSTUKOvsoTLmjY2eytdNjEqnmIwOESmZmdeiASEK1uY1tjuAtrrwMjbOS55a8mlssX8NMeTiCYzgFD86hDDdQhTpQQHiAJ3i27qxH68V6nZXmrHnPIfyR9fYD9WyQBA==</latexit><latexit sha1_base64="EQAAM1j/Ie8eqC8qE7NRLV0Spmg=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIVdG23EYBrLBMwFkiXMTs4mY2Znl5lZISx5AhsLRWz1YextxLdxcik08YeBj/8/hznnBAlnSrvut5VbWV1b38hv2lvbO7t7hf2DhopTSbFOYx7LVkAUciawrpnm2Eokkijg2AyGlUnevEepWCxu9ShBPyJ9wUJGiTZWrdItFN2SO5WzDN4cilcf9mXy/mVXu4XPTi+maYRCU06Uantuov2MSM0ox7HdSRUmhA5JH9sGBYlQ+dl00LFzYpyeE8bSPKGdqfu7IyORUqMoMJUR0QO1mE3M/7J2qsMLP2MiSTUKOvsoTLmjY2eytdNjEqnmIwOESmZmdeiASEK1uY1tjuAtrrwMjbOS55a8mlssX8NMeTiCYzgFD86hDDdQhTpQQHiAJ3i27qxH68V6nZXmrHnPIfyR9fYD9WyQBA==</latexit><latexit sha1_base64="n9q4lqwqCrBAGkuJ+w9AiHHXDD4=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGxInc2UhJpLCGRjwQuZG+Zg5W9vcvungm58AtsLDTG1p9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8G0sfC7T6g0j+WDmSXoR3QsecgZNVZqNYblilt1lyCbxMtJBXI0h+WvwShmaYTSMEG17ntuYvyMKsOZwHlpkGpMKJvSMfYtlTRC7WfLQ+fkyiojEsbKljRkqf6eyGik9SwKbGdEzUSvewvxP6+fmrDmZ1wmqUHJVovCVBATk8XXZMQVMiNmllCmuL2VsAlVlBmbTcmG4K2/vEk6N1XPrXott1K/y+MowgVcwjV4cAt1uIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8AfO5w+UpYzD</latexit>

D
<latexit sha1_base64="k+Evk9/LT2U3D2FUCx6x034befI=">AAAB6HicbZC7SwNBEMbnfMbzFbW0WQyCVbiz0UYMamGZgHlAcoS9zVyyZm/v2N0TQgjY21goYus/Y2/nf+PmUWjiBws/vm+GnZkwFVwbz/t2lpZXVtfWcxvu5tb2zm5+b7+mk0wxrLJEJKoRUo2CS6wabgQ2UoU0DgXWw/71OK8/oNI8kXdmkGIQ067kEWfUWKty084XvKI3EVkEfwaFy0/34hEAyu38V6uTsCxGaZigWjd9LzXBkCrDmcCR28o0ppT1aRebFiWNUQfDyaAjcmydDokSZZ80ZOL+7hjSWOtBHNrKmJqens/G5n9ZMzPReTDkMs0MSjb9KMoEMQkZb006XCEzYmCBMsXtrIT1qKLM2Nu49gj+/MqLUDst+l7Rr3iF0hVMlYNDOIIT8OEMSnALZagCA4QneIFX5955dt6c92npkjPrOYA/cj5+AAVwjpE=</latexit><latexit sha1_base64="G8RSHBlg9lJEMWdbTCCPcRxw1n8=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIVdG23EoBaWCZgLJEuYnZxNxszOLjOzQljyBDYWitjqw9jbiG/j5FJo4g8DH/9/DnPOCRLOlHbdbyu3tLyyupZftzc2t7Z3Crt7dRWnkmKNxjyWzYAo5ExgTTPNsZlIJFHAsREMrsZ54x6lYrG41cME/Yj0BAsZJdpY1etOoeiW3ImcRfBmULz4sM+T9y+70il8trsxTSMUmnKiVMtzE+1nRGpGOY7sdqowIXRAetgyKEiEys8mg46cI+N0nTCW5gntTNzfHRmJlBpGgamMiO6r+Wxs/pe1Uh2e+RkTSapR0OlHYcodHTvjrZ0uk0g1HxogVDIzq0P7RBKqzW1scwRvfuVFqJ+UPLfkVd1i+RKmysMBHMIxeHAKZbiBCtSAAsIDPMGzdWc9Wi/W67Q0Z8169uGPrLcf9vCQBQ==</latexit><latexit sha1_base64="G8RSHBlg9lJEMWdbTCCPcRxw1n8=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIVdG23EoBaWCZgLJEuYnZxNxszOLjOzQljyBDYWitjqw9jbiG/j5FJo4g8DH/9/DnPOCRLOlHbdbyu3tLyyupZftzc2t7Z3Crt7dRWnkmKNxjyWzYAo5ExgTTPNsZlIJFHAsREMrsZ54x6lYrG41cME/Yj0BAsZJdpY1etOoeiW3ImcRfBmULz4sM+T9y+70il8trsxTSMUmnKiVMtzE+1nRGpGOY7sdqowIXRAetgyKEiEys8mg46cI+N0nTCW5gntTNzfHRmJlBpGgamMiO6r+Wxs/pe1Uh2e+RkTSapR0OlHYcodHTvjrZ0uk0g1HxogVDIzq0P7RBKqzW1scwRvfuVFqJ+UPLfkVd1i+RKmysMBHMIxeHAKZbiBCtSAAsIDPMGzdWc9Wi/W67Q0Z8169uGPrLcf9vCQBQ==</latexit><latexit sha1_base64="N532L3S4++3uGp4iHp6lOnatguw=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5sTBnUwjIB8wHJEfY2c8mavb1jd08IR36BjYUitv4kO/+Nm+QKTXww8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzDRBP6IjyUPOqLFS825QrrhVdwGyTrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHRGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlrfsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXdCv1mzyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AlimMxA==</latexit>

E
<latexit sha1_base64="NlFKxwEorTyvX+ZWl7iisJb1VZk=">AAAB6HicbZC7SwNBEMbnfMbzFbW0WQyCVbiz0UYMimCZgHlAcoS9zVyyZm/v2N0TQgjY21goYus/Y2/nf+PmUWjiBws/vm+GnZkwFVwbz/t2lpZXVtfWcxvu5tb2zm5+b7+mk0wxrLJEJKoRUo2CS6wabgQ2UoU0DgXWw/71OK8/oNI8kXdmkGIQ067kEWfUWKty084XvKI3EVkEfwaFy0/34hEAyu38V6uTsCxGaZigWjd9LzXBkCrDmcCR28o0ppT1aRebFiWNUQfDyaAjcmydDokSZZ80ZOL+7hjSWOtBHNrKmJqens/G5n9ZMzPReTDkMs0MSjb9KMoEMQkZb006XCEzYmCBMsXtrIT1qKLM2Nu49gj+/MqLUDst+l7Rr3iF0hVMlYNDOIIT8OEMSnALZagCA4QneIFX5955dt6c92npkjPrOYA/cj5+AAb0jpI=</latexit><latexit sha1_base64="bH4UPRdYnmM6bMmSz7bDix7UCZc=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjW7EogguW7AXaEOZTE/asZNJmJkIJfQJ3LhQxK0+jHs34ts4vSy09YeBj/8/hznnBAlnSrvut5VbWl5ZXcuv2xubW9s7hd29uopTSbFGYx7LZkAUciawppnm2Ewkkijg2AgGV+O8cY9SsVjc6mGCfkR6goWMEm2s6nWnUHRL7kTOIngzKF582OfJ+5dd6RQ+292YphEKTTlRquW5ifYzIjWjHEd2O1WYEDogPWwZFCRC5WeTQUfOkXG6ThhL84R2Ju7vjoxESg2jwFRGRPfVfDY2/8taqQ7P/IyJJNUo6PSjMOWOjp3x1k6XSaSaDw0QKpmZ1aF9IgnV5ja2OYI3v/Ii1E9Knlvyqm6xfAlT5eEADuEYPDiFMtxABWpAAeEBnuDZurMerRfrdVqas2Y9+/BH1tsP+HSQBg==</latexit><latexit sha1_base64="bH4UPRdYnmM6bMmSz7bDix7UCZc=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjW7EogguW7AXaEOZTE/asZNJmJkIJfQJ3LhQxK0+jHs34ts4vSy09YeBj/8/hznnBAlnSrvut5VbWl5ZXcuv2xubW9s7hd29uopTSbFGYx7LZkAUciawppnm2Ewkkijg2AgGV+O8cY9SsVjc6mGCfkR6goWMEm2s6nWnUHRL7kTOIngzKF582OfJ+5dd6RQ+292YphEKTTlRquW5ifYzIjWjHEd2O1WYEDogPWwZFCRC5WeTQUfOkXG6ThhL84R2Ju7vjoxESg2jwFRGRPfVfDY2/8taqQ7P/IyJJNUo6PSjMOWOjp3x1k6XSaSaDw0QKpmZ1aF9IgnV5ja2OYI3v/Ii1E9Knlvyqm6xfAlT5eEADuEYPDiFMtxABWpAAeEBnuDZurMerRfrdVqas2Y9+/BH1tsP+HSQBg==</latexit><latexit sha1_base64="UuWujcJ1qnBgRNBp8ukQAU/1iwM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m82GNRBI8t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeTcoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrupX6TR5HEc7gHC7Bg2uowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Al62MxQ==</latexit>

F
<latexit sha1_base64="uMv5FUJHmHt3pFNm7BO6XhGtAXY=">AAAB6HicbZC7SwNBEMbnfMbzFbW0WQyCVbiz0UYMCmKZgHlAcoS9zVyyZm/v2N0TQgjY21goYus/Y2/nf+PmUWjiBws/vm+GnZkwFVwbz/t2lpZXVtfWcxvu5tb2zm5+b7+mk0wxrLJEJKoRUo2CS6wabgQ2UoU0DgXWw/71OK8/oNI8kXdmkGIQ067kEWfUWKty084XvKI3EVkEfwaFy0/34hEAyu38V6uTsCxGaZigWjd9LzXBkCrDmcCR28o0ppT1aRebFiWNUQfDyaAjcmydDokSZZ80ZOL+7hjSWOtBHNrKmJqens/G5n9ZMzPReTDkMs0MSjb9KMoEMQkZb006XCEzYmCBMsXtrIT1qKLM2Nu49gj+/MqLUDst+l7Rr3iF0hVMlYNDOIIT8OEMSnALZagCA4QneIFX5955dt6c92npkjPrOYA/cj5+AAh4jpM=</latexit><latexit sha1_base64="HEQ4IExNQzo4E9k8+oDEYThRsbY=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjW7EoiAuW7AXaEOZTE/asZNJmJkIJfQJ3LhQxK0+jHs34ts4vSy09YeBj/8/hznnBAlnSrvut5VbWl5ZXcuv2xubW9s7hd29uopTSbFGYx7LZkAUciawppnm2Ewkkijg2AgGV+O8cY9SsVjc6mGCfkR6goWMEm2s6nWnUHRL7kTOIngzKF582OfJ+5dd6RQ+292YphEKTTlRquW5ifYzIjWjHEd2O1WYEDogPWwZFCRC5WeTQUfOkXG6ThhL84R2Ju7vjoxESg2jwFRGRPfVfDY2/8taqQ7P/IyJJNUo6PSjMOWOjp3x1k6XSaSaDw0QKpmZ1aF9IgnV5ja2OYI3v/Ii1E9Knlvyqm6xfAlT5eEADuEYPDiFMtxABWpAAeEBnuDZurMerRfrdVqas2Y9+/BH1tsP+fiQBw==</latexit><latexit sha1_base64="HEQ4IExNQzo4E9k8+oDEYThRsbY=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjW7EoiAuW7AXaEOZTE/asZNJmJkIJfQJ3LhQxK0+jHs34ts4vSy09YeBj/8/hznnBAlnSrvut5VbWl5ZXcuv2xubW9s7hd29uopTSbFGYx7LZkAUciawppnm2Ewkkijg2AgGV+O8cY9SsVjc6mGCfkR6goWMEm2s6nWnUHRL7kTOIngzKF582OfJ+5dd6RQ+292YphEKTTlRquW5ifYzIjWjHEd2O1WYEDogPWwZFCRC5WeTQUfOkXG6ThhL84R2Ju7vjoxESg2jwFRGRPfVfDY2/8taqQ7P/IyJJNUo6PSjMOWOjp3x1k6XSaSaDw0QKpmZ1aF9IgnV5ja2OYI3v/Ii1E9Knlvyqm6xfAlT5eEADuEYPDiFMtxABWpAAeEBnuDZurMerRfrdVqas2Y9+/BH1tsP+fiQBw==</latexit><latexit sha1_base64="XFqyBFTgCEUxwJTuQd64ewaUeqA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m82GNREI8t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeTcoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrupX6TR5HEc7gHC7Bg2uowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AmTGMxg==</latexit>

W
<latexit sha1_base64="SgWXombg1msUYlBJWSd7nhjmw3I=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zVyyZm/v2N0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIrg2rvvt5FZW19Y38puFre2d3b3i/kFDx6liWGexiFUroBoFl1g33AhsJQppFAhsBsObSd58QKV5LO/MKEE/on3JQ86osVat2S2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmmE0jBBtW57bmL8jCrDmcBxoZNqTCgb0j62LUoaofaz6aBjcmKdHgljZZ80ZOr+7shopPUoCmxlRM1AL2YT87+snZrwws+4TFKDks0+ClNBTEwmW5MeV8iMGFmgTHE7K2EDqigz9jYFewRvceVlaJyVPbfs1dxS5RpmysMRHMMpeHAOFbiFKtSBAcITvMCrc+88O2/O+6w058x7DuGPnI8fIjyOpA==</latexit><latexit sha1_base64="So0n/WFrGezzh4Ql0YSNr0dJmr0=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxVqXfyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfK/oVr1C6gqlycAhHcAI+nEEJbqAMVWCA8ABP8OzcOY/Oi/M6LV1yZj0H8EfO2w8Ty5AY</latexit><latexit sha1_base64="So0n/WFrGezzh4Ql0YSNr0dJmr0=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxVqXfyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfK/oVr1C6gqlycAhHcAI+nEEJbqAMVWCA8ABP8OzcOY/Oi/M6LV1yZj0H8EfO2w8Ty5AY</latexit><latexit sha1_base64="9SEGhucspoU8Qdg45nZgK4r6jcA=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9Ej04hESCyTQkO0yhZXtttndmpCGX+DFg8Z49Sd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT5p6yRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zczf3OEyrNE/lgpikGMR1JHnFGjZVanUG15tbdBcg68QpSgwLNQfWrP0xYFqM0TFCte56bmiCnynAmcFbpZxpTyiZ0hD1LJY1RB/ni0Bm5sMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJroJci7TzKBky0VRJohJyPxrMuQKmRFTSyhT3N5K2JgqyozNpmJD8FZfXiftq7rn1r2WW2vcFnGU4QzO4RI8uIYG3EMTfGCA8Ayv8OY8Oi/Ou/OxbC05xcwp/IHz+QOy9YzX</latexit>

…

Position Prediction

Word Prediction

…

(a)
<latexit sha1_base64="282JJehD7WAjx0hpBWFCbBzguNs=">AAAB6nicbVDLSgNBEOz1GeNr1aOXwSDES9j1oseAF48JmgckS5id9CZDZmeXmVkhLPkELx4U8eqH+A3e/As/wcnjoIkFDUVVN91dYSq4Np735aytb2xubRd2irt7+weH7tFxUyeZYthgiUhUO6QaBZfYMNwIbKcKaRwKbIWjm6nfekCleSLvzTjFIKYDySPOqLHSXZle9NySV/FmIKvEX5BS1a1/fwBAred+dvsJy2KUhgmqdcf3UhPkVBnOBE6K3UxjStmIDrBjqaQx6iCfnToh51bpkyhRtqQhM/X3RE5jrcdxaDtjaoZ62ZuK/3mdzETXQc5lmhmUbL4oygQxCZn+TfpcITNibAllittbCRtSRZmx6RRtCP7yy6ukeVnxvYpft2l4MEcBTuEMyuDDFVThFmrQAAYDeIRneHGE8+S8Om/z1jVnMXMCf+C8/wChyI+F</latexit><latexit sha1_base64="NcIupzmf3RhxzTFJaklXvkry3Y0=">AAAB6nicbVC7SgNBFL0bXzG+Vu20GQxCbMKujZYBGwuLBM0DkiXMTmaTIbMzy8ysEJZ8gdhYKGLrn/gHdv6Fn+DkUWjigQuHc+7l3nvChDNtPO/Lya2srq1v5DcLW9s7u3vu/kFDy1QRWieSS9UKsaacCVo3zHDaShTFcchpMxxeTfzmPVWaSXFnRgkNYtwXLGIEGyvdlvBZ1y16ZW8KtEz8OSlW3Nr3x83RQ7XrfnZ6kqQxFYZwrHXb9xITZFgZRjgdFzqppgkmQ9ynbUsFjqkOsumpY3RqlR6KpLIlDJqqvycyHGs9ikPbGWMz0IveRPzPa6cmugwyJpLUUEFmi6KUIyPR5G/UY4oSw0eWYKKYvRWRAVaYGJtOwYbgL768TBrnZd8r+zWbhgcz5OEYTqAEPlxABa6hCnUg0IdHeIYXhztPzqvzNmvNOfOZQ/gD5/0H55aQeQ==</latexit><latexit sha1_base64="NcIupzmf3RhxzTFJaklXvkry3Y0=">AAAB6nicbVC7SgNBFL0bXzG+Vu20GQxCbMKujZYBGwuLBM0DkiXMTmaTIbMzy8ysEJZ8gdhYKGLrn/gHdv6Fn+DkUWjigQuHc+7l3nvChDNtPO/Lya2srq1v5DcLW9s7u3vu/kFDy1QRWieSS9UKsaacCVo3zHDaShTFcchpMxxeTfzmPVWaSXFnRgkNYtwXLGIEGyvdlvBZ1y16ZW8KtEz8OSlW3Nr3x83RQ7XrfnZ6kqQxFYZwrHXb9xITZFgZRjgdFzqppgkmQ9ynbUsFjqkOsumpY3RqlR6KpLIlDJqqvycyHGs9ikPbGWMz0IveRPzPa6cmugwyJpLUUEFmi6KUIyPR5G/UY4oSw0eWYKKYvRWRAVaYGJtOwYbgL768TBrnZd8r+zWbhgcz5OEYTqAEPlxABa6hCnUg0IdHeIYXhztPzqvzNmvNOfOZQ/gD5/0H55aQeQ==</latexit><latexit sha1_base64="fIGXaRFLss1xFgKurVPdeLoqlJM=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoMQm7Bno2XAxjKi+YDkCHubSbJkb+/Y3RPCkZ9gY6GIrb/Izn/jJrlCEx8MPN6bYWZemEhhLKXfXmFjc2t7p7hb2ts/ODwqH5+0TJxqjk0ey1h3QmZQCoVNK6zETqKRRaHEdji5nfvtJ9RGxOrRThMMIjZSYig4s056qLLLfrlCa3QBsk78nFQgR6Nf/uoNYp5GqCyXzJiuTxMbZExbwSXOSr3UYML4hI2w66hiEZogW5w6IxdOGZBhrF0pSxbq74mMRcZMo9B1RsyOzao3F//zuqkd3gSZUElqUfHlomEqiY3J/G8yEBq5lVNHGNfC3Ur4mGnGrUun5ELwV19eJ62rmk9r/j2t1GkeRxHO4Byq4MM11OEOGtAEDiN4hld486T34r17H8vWgpfPnMIfeJ8/ggGNNA==</latexit>

(b)
<latexit sha1_base64="TY/LbeBHIxrBTnqAw4a9X8UHtFM=">AAAB6nicbVDLSgNBEOz1GeNr1aOXwSDES9j1oseAF48JmgckS5id9CZDZmeXmVkhLPkELx4U8eqH+A3e/As/wcnjoIkFDUVVN91dYSq4Np735aytb2xubRd2irt7+weH7tFxUyeZYthgiUhUO6QaBZfYMNwIbKcKaRwKbIWjm6nfekCleSLvzTjFIKYDySPOqLHSXTm86Lklr+LNQFaJvyClqlv//gCAWs/97PYTlsUoDRNU647vpSbIqTKcCZwUu5nGlLIRHWDHUklj1EE+O3VCzq3SJ1GibElDZurviZzGWo/j0HbG1Az1sjcV//M6mYmug5zLNDMo2XxRlAliEjL9m/S5QmbE2BLKFLe3EjakijJj0ynaEPzll1dJ87LiexW/btPwYI4CnMIZlMGHK6jCLdSgAQwG8AjP8OII58l5dd7mrWvOYuYE/sB5/wGjTY+G</latexit><latexit sha1_base64="SVs4Ppr5xYUt4bgzNkXsuF7L3yw=">AAAB6nicbVC7SgNBFL0bXzG+Vu20GQxCbMKujZYBGwuLBM0DkiXMTmaTIbMzy8ysEJZ8gdhYKGLrn/gHdv6Fn+DkUWjigQuHc+7l3nvChDNtPO/Lya2srq1v5DcLW9s7u3vu/kFDy1QRWieSS9UKsaacCVo3zHDaShTFcchpMxxeTfzmPVWaSXFnRgkNYtwXLGIEGyvdlsKzrlv0yt4UaJn4c1KsuLXvj5ujh2rX/ez0JEljKgzhWOu27yUmyLAyjHA6LnRSTRNMhrhP25YKHFMdZNNTx+jUKj0USWVLGDRVf09kONZ6FIe2M8ZmoBe9ifif105NdBlkTCSpoYLMFkUpR0aiyd+oxxQlho8swUQxeysiA6wwMTadgg3BX3x5mTTOy75X9ms2DQ9myMMxnEAJfLiAClxDFepAoA+P8AwvDneenFfnbdaac+Yzh/AHzvsP6RuQeg==</latexit><latexit sha1_base64="SVs4Ppr5xYUt4bgzNkXsuF7L3yw=">AAAB6nicbVC7SgNBFL0bXzG+Vu20GQxCbMKujZYBGwuLBM0DkiXMTmaTIbMzy8ysEJZ8gdhYKGLrn/gHdv6Fn+DkUWjigQuHc+7l3nvChDNtPO/Lya2srq1v5DcLW9s7u3vu/kFDy1QRWieSS9UKsaacCVo3zHDaShTFcchpMxxeTfzmPVWaSXFnRgkNYtwXLGIEGyvdlsKzrlv0yt4UaJn4c1KsuLXvj5ujh2rX/ez0JEljKgzhWOu27yUmyLAyjHA6LnRSTRNMhrhP25YKHFMdZNNTx+jUKj0USWVLGDRVf09kONZ6FIe2M8ZmoBe9ifif105NdBlkTCSpoYLMFkUpR0aiyd+oxxQlho8swUQxeysiA6wwMTadgg3BX3x5mTTOy75X9ms2DQ9myMMxnEAJfLiAClxDFepAoA+P8AwvDneenFfnbdaac+Yzh/AHzvsP6RuQeg==</latexit><latexit sha1_base64="Q9Q3RlmsHuz9bAIr9Qt5YJQR75o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoMQm7Bno2XAxjKi+YDkCHubSbJkb+/Y3RPCkZ9gY6GIrb/Izn/jJrlCEx8MPN6bYWZemEhhLKXfXmFjc2t7p7hb2ts/ODwqH5+0TJxqjk0ey1h3QmZQCoVNK6zETqKRRaHEdji5nfvtJ9RGxOrRThMMIjZSYig4s056qIaX/XKF1ugCZJ34OalAjka//NUbxDyNUFkumTFdnyY2yJi2gkuclXqpwYTxCRth11HFIjRBtjh1Ri6cMiDDWLtSlizU3xMZi4yZRqHrjJgdm1VvLv7ndVM7vAkyoZLUouLLRcNUEhuT+d9kIDRyK6eOMK6Fu5XwMdOMW5dOyYXgr768TlpXNZ/W/HtaqdM8jiKcwTlUwYdrqMMdNKAJHEbwDK/w5knvxXv3PpatBS+fOYU/8D5/AIOGjTU=</latexit>

(c)
<latexit sha1_base64="a2Ke1LnYii/s9aZk8SGWv22R5+0=">AAAB6nicbVDLSgNBEOz1GeNr1aOXwSDES9j1oseAF48JmgckS5id9CZDZmeXmVkhLPkELx4U8eqH+A3e/As/wcnjoIkFDUVVN91dYSq4Np735aytb2xubRd2irt7+weH7tFxUyeZYthgiUhUO6QaBZfYMNwIbKcKaRwKbIWjm6nfekCleSLvzTjFIKYDySPOqLHSXZld9NySV/FmIKvEX5BS1a1/fwBAred+dvsJy2KUhgmqdcf3UhPkVBnOBE6K3UxjStmIDrBjqaQx6iCfnToh51bpkyhRtqQhM/X3RE5jrcdxaDtjaoZ62ZuK/3mdzETXQc5lmhmUbL4oygQxCZn+TfpcITNibAllittbCRtSRZmx6RRtCP7yy6ukeVnxvYpft2l4MEcBTuEMyuDDFVThFmrQAAYDeIRneHGE8+S8Om/z1jVnMXMCf+C8/wCk0o+H</latexit><latexit sha1_base64="Y05+glcJ37EcxNCCi42td7bLKjE=">AAAB6nicbVC7SgNBFL0bXzG+Vu20GQxCbMKujZYBGwuLBM0DkiXMTmaTIbMzy8ysEJZ8gdhYKGLrn/gHdv6Fn+DkUWjigQuHc+7l3nvChDNtPO/Lya2srq1v5DcLW9s7u3vu/kFDy1QRWieSS9UKsaacCVo3zHDaShTFcchpMxxeTfzmPVWaSXFnRgkNYtwXLGIEGyvdlshZ1y16ZW8KtEz8OSlW3Nr3x83RQ7XrfnZ6kqQxFYZwrHXb9xITZFgZRjgdFzqppgkmQ9ynbUsFjqkOsumpY3RqlR6KpLIlDJqqvycyHGs9ikPbGWMz0IveRPzPa6cmugwyJpLUUEFmi6KUIyPR5G/UY4oSw0eWYKKYvRWRAVaYGJtOwYbgL768TBrnZd8r+zWbhgcz5OEYTqAEPlxABa6hCnUg0IdHeIYXhztPzqvzNmvNOfOZQ/gD5/0H6qCQew==</latexit><latexit sha1_base64="Y05+glcJ37EcxNCCi42td7bLKjE=">AAAB6nicbVC7SgNBFL0bXzG+Vu20GQxCbMKujZYBGwuLBM0DkiXMTmaTIbMzy8ysEJZ8gdhYKGLrn/gHdv6Fn+DkUWjigQuHc+7l3nvChDNtPO/Lya2srq1v5DcLW9s7u3vu/kFDy1QRWieSS9UKsaacCVo3zHDaShTFcchpMxxeTfzmPVWaSXFnRgkNYtwXLGIEGyvdlshZ1y16ZW8KtEz8OSlW3Nr3x83RQ7XrfnZ6kqQxFYZwrHXb9xITZFgZRjgdFzqppgkmQ9ynbUsFjqkOsumpY3RqlR6KpLIlDJqqvycyHGs9ikPbGWMz0IveRPzPa6cmugwyJpLUUEFmi6KUIyPR5G/UY4oSw0eWYKKYvRWRAVaYGJtOwYbgL768TBrnZd8r+zWbhgcz5OEYTqAEPlxABa6hCnUg0IdHeIYXhztPzqvzNmvNOfOZQ/gD5/0H6qCQew==</latexit><latexit sha1_base64="MAPWp0gE1a27E4Jf1OKQ5jsE+LQ=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoMQm7Bno2XAxjKi+YDkCHubSbJkb+/Y3RPCkZ9gY6GIrb/Izn/jJrlCEx8MPN6bYWZemEhhLKXfXmFjc2t7p7hb2ts/ODwqH5+0TJxqjk0ey1h3QmZQCoVNK6zETqKRRaHEdji5nfvtJ9RGxOrRThMMIjZSYig4s056qPLLfrlCa3QBsk78nFQgR6Nf/uoNYp5GqCyXzJiuTxMbZExbwSXOSr3UYML4hI2w66hiEZogW5w6IxdOGZBhrF0pSxbq74mMRcZMo9B1RsyOzao3F//zuqkd3gSZUElqUfHlomEqiY3J/G8yEBq5lVNHGNfC3Ur4mGnGrUun5ELwV19eJ62rmk9r/j2t1GkeRxHO4Byq4MM11OEOGtAEDiN4hld486T34r17H8vWgpfPnMIfeJ8/hQuNNg==</latexit>

Figure 2: The overall framework of the proposed Transformer-InDIGO which includes (a) the word &
position prediction module; (b) the one step decoding with position updating; (c) final decoding output by
reordering.

inefficient as mentioned in Section 3.2, in that abso-
lute positions are changed during decoding, invali-
dating the previous hidden states. In contrast, we
adapt Shaw et al. (2018) to use relative positions in
self-attention. Different from Shaw et al. (2018), in
which a clipping distance d (usually d � 2) is set
for relative positions, our relative-position repre-
sentations only preserve d = 1 relations (Eq. (3)).

Each attention head in a multi-head self-attention
module of Transformer-InDIGO takes the hidden
states of a partial sequence y0:t, denoted as U =
(u0, ...,ut), and its corresponding relative position
matrix R

t as input, where each input state ui 2

Rdmodel . The logit ei,j for attention is computed as:

ei,j =

�
u>
i
Q
�
·

⇣
u>
j
K + A[ri,j+1]

⌘>

p
dmodel

, (7)

where Q, K 2 Rdmodel⇥dmodel and A 2 R3⇥dmodel

are parameter matrices. A[ri,j+1] is the row vector
indexed by ri,j + 1, which biases all the input keys
based on the relative position, ri,j .

Word & Position Prediction Like the vanilla
Transformer, we take the representations from the
last layer of self-attention, H = (h0, ...,ht) and
H 2 Rdmodel⇥(t+1), to predict both the next word
yt+1 and its position vector rt+1 in two stages
based on the following factorization:

p(yt+1, rt+1|H)=p(yt+1|H) · p(rt+1|yt+1, H)

The prediction module for word & position predic-
tion are shown in Fig. 2(a).

First, we predict the next word yt+1 from the
categorical distribution pword(y|H) as:

pword(y|H) = softmax
⇣
(h>

t F) · W>
⌘

, (8)

where W 2 RdV⇥dmodel is the embedding matrix
and dV is the size of vocabulary. We linearly project
the last representation ht using F 2 Rdmodel⇥dmodel

for querying W .
Then, as shown in Eq. (6), the prediction of the

next position is done by performing insertion oper-
ations to existing words which can be modeled sim-
ilarly to Pointer Networks (Vinyals et al., 2015b).
We predict a pointer kt+1 2 [0, 2t + 1] based on:

ppointer(k|yt+1, H) =

softmax

(h>

t E + W[yt+1]) ·


H

>
C

H
>
D

�>!
,

(9)

where C, D, E 2 Rdmodel⇥dmodel are parameter ma-
trices and W[yt+1] is the embedding of the pre-
dicted word. C, D are used to obtain the left
and right keys, respectively, considering that each
word has two “keys” (its left and right) for insert-
ing the generated word. The query vector is ob-
tained by adding up the word embedding W[yt+1],
and the linearly projected state, h>

t E. The result-
ing relative-position vector, rt+1 is computed us-
ing kt+1 according to Eq. (6). We manually set
ppointer(0|·) = ppointer(2 + t|·) = 0 to avoid any
word from being inserted to the left of hsi and the
right of h/si.

Position Updating As mentioned in Sec. 3.1, we
update the relative position representation R

t with
the predicted rt+1. Because updating the relative
positions will not change the pre-computed relative-
position representations, Transformer-InDIGO can
reuse the previous hidden states in the next decod-
ing step the same as the vanilla Transformer.

Learning

Pre-defined Order Descriptions

Left-to-right (L2R) Generate words from left to right. (Wu et al., 2018)
Right-to-left (R2L) Generate words from right to left. (Wu et al., 2018)

Odd-Even (ODD) Generate words at odd positions from left to right, then generate even positions. (Ford et al., 2018)
Balanced-tree (BLT) Generate words with a top-down left-to-right order from a balanced binary tree. (Stern et al., 2019)
Syntax-tree (SYN) Generate words with a top-down left-to-right order from the dependency tree. (Wang et al., 2018b)
Common-First (CF) Generate all common words first from left to right, and then generate the others. (Ford et al., 2018)
Rare-First (RF) Generate all rare words first from left to right, and then generate the remaining. (Ford et al., 2018)

Random (RND) Generate words in a random order shuffled every time the example was loaded.

Table 1: Descriptions of the pre-defined orders used in this work. Major references that have explored
these generation orders with different models and applications are also marked.

4.2 Learning

Training requires maximizing the marginalized
likelihood in Eq. (2). Yet this is intractable since
we need to enumerate all of the T ! permutations of
tokens. Instead, we maximize the evidence lower-
bound (ELBO) of the original objective by intro-
ducing an approximate posterior distribution of
generation orders q(⇡|x,y), which provides the
probabilities of latent generation orders based on
the ground-truth sequences x and y:

LELBO = E
⇡⇠q

log p✓(y⇡|x) + H(q)

= E
r2:T+1⇠q

0

@
T+1X

t=1

log p✓(yt+1|y0:t, r0:t, x1:T 0)| {z }
Word Prediction Loss

+
TX

t=1

log p✓(rt+1|y0:t+1, r0:t, x1:T 0)| {z }
Position Prediction Loss

1

A + H(q),

(10)
where ⇡ = r2:T+1, sampled from q(⇡|x,y), is rep-
resented as relative positions. H(q) is the entropy
term which can be ignored if q is fixed. Eq. (10)
shows that given a sampled order, the learning ob-
jective is divided into word & position objectives.
For calculating the position prediction loss, we ag-
gregate the two probabilities corresponding to the
same position by

p✓(rt+1|·) = ppointer(k
l
|·) + ppointer(k

r
|·), (11)

where ppointer(kl
|·) and ppointer(kr

|·) are calculated
simultaneously from the same softmax function in
Eq. (9). k

l
, k

r(kl
6= k

r) represent the keys corre-
sponding to the same relative position. Here, we
study two types of q(⇡|x,y):

Pre-defined Order If we already possess some
prior knowledge about the sequence, e.g., the L2R
order is proven to be a strong baseline in many

scenarios, we assume a Dirac-delta distribution
q(⇡|x,y) = �(⇡ = ⇡⇤(x,y)), where ⇡⇤(x,y))
is a predefined order. In this work, we study a set of
pre-defined orders which can be found in Table. 1,
for evaluating their effect on generation.

Searched Adaptive Order (SAO) We choose
the approximate posterior q as the point estimation
that maximizes log p✓(y⇡|x). In practice, we ap-
proximate these generation orders ⇡ through beam-

search (Pal et al., 2006). Unlike the original beam-
search for autoregressive decoding that searches in
the sequence space to find the sequence maximiz-
ing the probability shown in Eq. 1, we search in the
space of all the permutations of the target sequence
to find ⇡ maximising Eq. 2, as all the target tokens
are known in advance during training.

More specifically, at each step t, for every sub-
sequence y

(b)
0:t 2 B, we evaluate the probabilities

of every possible choice from the left words y
0
2

y \ y
(b)
0:t and its corresponding position r0. We

calculate the cumulative likelihood for each y
0
, r0,

based on which we select top-B sub-sequences as
the new set B for the next step. After obtaining the
B generation orders, we optimize our objective as
an average over these orders:

LSAO =
1

B

X

⇡2B
log p✓(y⇡|x) (12)

where we assume q(⇡|x,y) =

⇢
1/B ⇡ 2 B

0 otherwise
.

Beam Search with Dropout The goal of beam
search is to approximately find the most likely
generation orders, which limits learning from ex-
ploring other generation orders that may not be
favourable currently but may ultimately be deemed
better. Prior research (Vijayakumar et al., 2016)

• Maximize the evident lower bound (ELBO)

• Approximate posterior distribution of generation orders q(π |x, y)

Searched Adaptive Order (SAO)

Pre-defined Order Descriptions

Left-to-right (L2R) Generate words from left to right. (Wu et al., 2018)
Right-to-left (R2L) Generate words from right to left. (Wu et al., 2018)

Odd-Even (ODD) Generate words at odd positions from left to right, then generate even positions. (Ford et al., 2018)
Balanced-tree (BLT) Generate words with a top-down left-to-right order from a balanced binary tree. (Stern et al., 2019)
Syntax-tree (SYN) Generate words with a top-down left-to-right order from the dependency tree. (Wang et al., 2018b)
Common-First (CF) Generate all common words first from left to right, and then generate the others. (Ford et al., 2018)
Rare-First (RF) Generate all rare words first from left to right, and then generate the remaining. (Ford et al., 2018)

Random (RND) Generate words in a random order shuffled every time the example was loaded.

Table 1: Descriptions of the pre-defined orders used in this work. Major references that have explored
these generation orders with different models and applications are also marked.

4.2 Learning

Training requires maximizing the marginalized
likelihood in Eq. (2). Yet this is intractable since
we need to enumerate all of the T ! permutations of
tokens. Instead, we maximize the evidence lower-
bound (ELBO) of the original objective by intro-
ducing an approximate posterior distribution of
generation orders q(⇡|x,y), which provides the
probabilities of latent generation orders based on
the ground-truth sequences x and y:

LELBO = E
⇡⇠q

log p✓(y⇡|x) + H(q)

= E
r2:T+1⇠q

0

@
T+1X

t=1

log p✓(yt+1|y0:t, r0:t, x1:T 0)| {z }
Word Prediction Loss

+
TX

t=1

log p✓(rt+1|y0:t+1, r0:t, x1:T 0)| {z }
Position Prediction Loss

1

A + H(q),

(10)
where ⇡ = r2:T+1, sampled from q(⇡|x,y), is rep-
resented as relative positions. H(q) is the entropy
term which can be ignored if q is fixed. Eq. (10)
shows that given a sampled order, the learning ob-
jective is divided into word & position objectives.
For calculating the position prediction loss, we ag-
gregate the two probabilities corresponding to the
same position by

p✓(rt+1|·) = ppointer(k
l
|·) + ppointer(k

r
|·), (11)

where ppointer(kl
|·) and ppointer(kr

|·) are calculated
simultaneously from the same softmax function in
Eq. (9). k

l
, k

r(kl
6= k

r) represent the keys corre-
sponding to the same relative position. Here, we
study two types of q(⇡|x,y):

Pre-defined Order If we already possess some
prior knowledge about the sequence, e.g., the L2R
order is proven to be a strong baseline in many

scenarios, we assume a Dirac-delta distribution
q(⇡|x,y) = �(⇡ = ⇡⇤(x,y)), where ⇡⇤(x,y))
is a predefined order. In this work, we study a set of
pre-defined orders which can be found in Table. 1,
for evaluating their effect on generation.

Searched Adaptive Order (SAO) We choose
the approximate posterior q as the point estimation
that maximizes log p✓(y⇡|x). In practice, we ap-
proximate these generation orders ⇡ through beam-

search (Pal et al., 2006). Unlike the original beam-
search for autoregressive decoding that searches in
the sequence space to find the sequence maximiz-
ing the probability shown in Eq. 1, we search in the
space of all the permutations of the target sequence
to find ⇡ maximising Eq. 2, as all the target tokens
are known in advance during training.

More specifically, at each step t, for every sub-
sequence y

(b)
0:t 2 B, we evaluate the probabilities

of every possible choice from the left words y
0
2

y \ y
(b)
0:t and its corresponding position r0. We

calculate the cumulative likelihood for each y
0
, r0,

based on which we select top-B sub-sequences as
the new set B for the next step. After obtaining the
B generation orders, we optimize our objective as
an average over these orders:

LSAO =
1

B

X

⇡2B
log p✓(y⇡|x) (12)

where we assume q(⇡|x,y) =

⇢
1/B ⇡ 2 B

0 otherwise
.

Beam Search with Dropout The goal of beam
search is to approximately find the most likely
generation orders, which limits learning from ex-
ploring other generation orders that may not be
favourable currently but may ultimately be deemed
better. Prior research (Vijayakumar et al., 2016)

Pre-defined Order Descriptions

Left-to-right (L2R) Generate words from left to right. (Wu et al., 2018)
Right-to-left (R2L) Generate words from right to left. (Wu et al., 2018)

Odd-Even (ODD) Generate words at odd positions from left to right, then generate even positions. (Ford et al., 2018)
Balanced-tree (BLT) Generate words with a top-down left-to-right order from a balanced binary tree. (Stern et al., 2019)
Syntax-tree (SYN) Generate words with a top-down left-to-right order from the dependency tree. (Wang et al., 2018b)
Common-First (CF) Generate all common words first from left to right, and then generate the others. (Ford et al., 2018)
Rare-First (RF) Generate all rare words first from left to right, and then generate the remaining. (Ford et al., 2018)

Random (RND) Generate words in a random order shuffled every time the example was loaded.

Table 1: Descriptions of the pre-defined orders used in this work. Major references that have explored
these generation orders with different models and applications are also marked.

4.2 Learning

Training requires maximizing the marginalized
likelihood in Eq. (2). Yet this is intractable since
we need to enumerate all of the T ! permutations of
tokens. Instead, we maximize the evidence lower-
bound (ELBO) of the original objective by intro-
ducing an approximate posterior distribution of
generation orders q(⇡|x,y), which provides the
probabilities of latent generation orders based on
the ground-truth sequences x and y:

LELBO = E
⇡⇠q

log p✓(y⇡|x) + H(q)

= E
r2:T+1⇠q

0

@
T+1X

t=1

log p✓(yt+1|y0:t, r0:t, x1:T 0)| {z }
Word Prediction Loss

+
TX

t=1

log p✓(rt+1|y0:t+1, r0:t, x1:T 0)| {z }
Position Prediction Loss

1

A + H(q),

(10)
where ⇡ = r2:T+1, sampled from q(⇡|x,y), is rep-
resented as relative positions. H(q) is the entropy
term which can be ignored if q is fixed. Eq. (10)
shows that given a sampled order, the learning ob-
jective is divided into word & position objectives.
For calculating the position prediction loss, we ag-
gregate the two probabilities corresponding to the
same position by

p✓(rt+1|·) = ppointer(k
l
|·) + ppointer(k

r
|·), (11)

where ppointer(kl
|·) and ppointer(kr

|·) are calculated
simultaneously from the same softmax function in
Eq. (9). k

l
, k

r(kl
6= k

r) represent the keys corre-
sponding to the same relative position. Here, we
study two types of q(⇡|x,y):

Pre-defined Order If we already possess some
prior knowledge about the sequence, e.g., the L2R
order is proven to be a strong baseline in many

scenarios, we assume a Dirac-delta distribution
q(⇡|x,y) = �(⇡ = ⇡⇤(x,y)), where ⇡⇤(x,y))
is a predefined order. In this work, we study a set of
pre-defined orders which can be found in Table. 1,
for evaluating their effect on generation.

Searched Adaptive Order (SAO) We choose
the approximate posterior q as the point estimation
that maximizes log p✓(y⇡|x). In practice, we ap-
proximate these generation orders ⇡ through beam-

search (Pal et al., 2006). Unlike the original beam-
search for autoregressive decoding that searches in
the sequence space to find the sequence maximiz-
ing the probability shown in Eq. 1, we search in the
space of all the permutations of the target sequence
to find ⇡ maximising Eq. 2, as all the target tokens
are known in advance during training.

More specifically, at each step t, for every sub-
sequence y

(b)
0:t 2 B, we evaluate the probabilities

of every possible choice from the left words y
0
2

y \ y
(b)
0:t and its corresponding position r0. We

calculate the cumulative likelihood for each y
0
, r0,

based on which we select top-B sub-sequences as
the new set B for the next step. After obtaining the
B generation orders, we optimize our objective as
an average over these orders:

LSAO =
1

B

X

⇡2B
log p✓(y⇡|x) (12)

where we assume q(⇡|x,y) =

⇢
1/B ⇡ 2 B

0 otherwise
.

Beam Search with Dropout The goal of beam
search is to approximately find the most likely
generation orders, which limits learning from ex-
ploring other generation orders that may not be
favourable currently but may ultimately be deemed
better. Prior research (Vijayakumar et al., 2016)

• is approximated by beam searchq(π |x, y)

Experiments
Pre-defined Order Descriptions

Left-to-right (L2R) Generate words from left to right. (Wu et al., 2018)
Right-to-left (R2L) Generate words from right to left. (Wu et al., 2018)

Odd-Even (ODD) Generate words at odd positions from left to right, then generate even positions. (Ford et al., 2018)
Balanced-tree (BLT) Generate words with a top-down left-to-right order from a balanced binary tree. (Stern et al., 2019)
Syntax-tree (SYN) Generate words with a top-down left-to-right order from the dependency tree. (Wang et al., 2018b)
Common-First (CF) Generate all common words first from left to right, and then generate the others. (Ford et al., 2018)
Rare-First (RF) Generate all rare words first from left to right, and then generate the remaining. (Ford et al., 2018)

Random (RND) Generate words in a random order shuffled every time the example was loaded.

Table 1: Descriptions of the pre-defined orders used in this work. Major references that have explored
these generation orders with different models and applications are also marked.

4.2 Learning

Training requires maximizing the marginalized
likelihood in Eq. (2). Yet this is intractable since
we need to enumerate all of the T ! permutations of
tokens. Instead, we maximize the evidence lower-
bound (ELBO) of the original objective by intro-
ducing an approximate posterior distribution of
generation orders q(⇡|x,y), which provides the
probabilities of latent generation orders based on
the ground-truth sequences x and y:

LELBO = E
⇡⇠q

log p✓(y⇡|x) + H(q)

= E
r2:T+1⇠q

0

@
T+1X

t=1

log p✓(yt+1|y0:t, r0:t, x1:T 0)| {z }
Word Prediction Loss

+
TX

t=1

log p✓(rt+1|y0:t+1, r0:t, x1:T 0)| {z }
Position Prediction Loss

1

A + H(q),

(10)
where ⇡ = r2:T+1, sampled from q(⇡|x,y), is rep-
resented as relative positions. H(q) is the entropy
term which can be ignored if q is fixed. Eq. (10)
shows that given a sampled order, the learning ob-
jective is divided into word & position objectives.
For calculating the position prediction loss, we ag-
gregate the two probabilities corresponding to the
same position by

p✓(rt+1|·) = ppointer(k
l
|·) + ppointer(k

r
|·), (11)

where ppointer(kl
|·) and ppointer(kr

|·) are calculated
simultaneously from the same softmax function in
Eq. (9). k

l
, k

r(kl
6= k

r) represent the keys corre-
sponding to the same relative position. Here, we
study two types of q(⇡|x,y):

Pre-defined Order If we already possess some
prior knowledge about the sequence, e.g., the L2R
order is proven to be a strong baseline in many

scenarios, we assume a Dirac-delta distribution
q(⇡|x,y) = �(⇡ = ⇡⇤(x,y)), where ⇡⇤(x,y))
is a predefined order. In this work, we study a set of
pre-defined orders which can be found in Table. 1,
for evaluating their effect on generation.

Searched Adaptive Order (SAO) We choose
the approximate posterior q as the point estimation
that maximizes log p✓(y⇡|x). In practice, we ap-
proximate these generation orders ⇡ through beam-

search (Pal et al., 2006). Unlike the original beam-
search for autoregressive decoding that searches in
the sequence space to find the sequence maximiz-
ing the probability shown in Eq. 1, we search in the
space of all the permutations of the target sequence
to find ⇡ maximising Eq. 2, as all the target tokens
are known in advance during training.

More specifically, at each step t, for every sub-
sequence y

(b)
0:t 2 B, we evaluate the probabilities

of every possible choice from the left words y
0
2

y \ y
(b)
0:t and its corresponding position r0. We

calculate the cumulative likelihood for each y
0
, r0,

based on which we select top-B sub-sequences as
the new set B for the next step. After obtaining the
B generation orders, we optimize our objective as
an average over these orders:

LSAO =
1

B

X

⇡2B
log p✓(y⇡|x) (12)

where we assume q(⇡|x,y) =

⇢
1/B ⇡ 2 B

0 otherwise
.

Beam Search with Dropout The goal of beam
search is to approximately find the most likely
generation orders, which limits learning from ex-
ploring other generation orders that may not be
favourable currently but may ultimately be deemed
better. Prior research (Vijayakumar et al., 2016)

Model
WMT16 Ro ! En WMT18 En ! Tr KFTT En ! Ja

BLEU Ribes Meteor TER BLEU Ribes Meteor TER BLEU Ribes Meteor TER

RND 20.20 79.35 41.00 63.20 03.04 55.45 19.12 90.60 17.09 70.89 35.24 70.11

L2R 31.82 83.37 52.19 50.62 14.85 69.20 33.90 71.56 30.87 77.72 48.57 59.92
R2L 31.62 83.18 52.09 50.20 14.38 68.87 33.33 71.91 30.44 77.95 47.91 61.09
ODD 30.11 83.09 50.68 50.79 13.64 68.85 32.48 72.84 28.59 77.01 46.28 60.12
BLT 24.38 81.70 45.67 55.38 08.72 65.70 27.40 77.76 21.50 73.97 40.23 64.39
SYN 29.62 82.65 50.25 52.14 – –
CF 30.25 83.22 50.71 50.72 12.04 67.61 31.18 74.75 28.91 77.06 46.46 61.56
RF 30.23 83.29 50.72 51.73 12.10 67.44 30.72 73.40 27.35 76.40 45.15 62.14

SAO 32.47 84.10 53.00 49.02 15.18 70.06 34.60 71.56 31.91 77.56 49.66 59.80

Table 3: Results of translation experiments for three language pairs in different decoding orders. Scores
are reported on the test set with four widely used evaluation metrics (BLEU", Meteor", TER# and Ribes").
We do not report models trained with SYN order on En-Tr and En-Ja due to the lack of reliable dependency
parsers. The statistical significance analysis6 between the outputs of SAO and L2R are conducted using
BLEU score as the metric, and the p-values are  0.001 for all three language pairs.

Figure 3: The BLEU scores on the test set for word
order recovery with various decoding beam sizes.

model simplicity.

Training When training with the pre-defined or-
ders, we reorder words of each training sequence
in advance accordingly which provides supervision
of the ground-truth positions that each word should
be inserted. We test the pre-defined orders listed in
Table 1. The SYN orders were generated according
to the dependency parse obtained by a dependency
parse parser7 following a parent-to-children left-
to-right order. The CF & RF orders are obtained
based on vocabulary cut-off so that the number of
common words and the number of rare words are
approximately the same (Ford et al., 2018). We
also consider on-the-fly sampling a random order
for each sentence as the baseline (RND). When
using L2R as the pre-defined order, Transformer-
InDIGO is almost equivalent to the vanilla Trans-
former, as the position prediction simply learns

7 https://spacy.io/usage/linguistic-features

to predict the next position as the left of the hsi
symbol. The only difference is that it enhances
the vanilla Transformer with a small number of
additional parameters for the position prediction.

We also train Transformer-InDIGO using the
searched adaptive order (SAO) where we set the
beam size to 8. In default, models trained with
SAO are bootstrapped from a slightly pre-trained
(6,000 steps) model in L2R order.

Inference During the test time, we do beam-
search as described in Sec. 4.3. We observe from
our preliminary experiments that models trained
with different orders (either pre-defined or SAO)
have very different optimal beam sizes for decod-
ing. Therefore, we perform sensitivity studies, in
which the beam sizes vary from 1 ⇠ 20 and pick
the beam size with the highest BLEU score on the
validation set for each particular model.

5.2 Results and Analysis

Word Order Recovery Word order recovery
takes a bag of words as input and recovers its origi-
nal word order, which is challenging as the search
space is factorial. We do not restrict the vocabulary
of the input words. We compare our model trained
with the L2R order and eight searched adaptive or-
ders (SAO) from beam search for word order recov-
ery. The BLEU scores over various beam sizes are
shown in Fig. 3. The model trained with SAO lead
to higher BLEU scores over that trained with L2R
with a gain up to 3 BLEU scores. Furthermore, in-
creasing the beam size brings more improvements
for SAO compared to L2R, suggesting that InDIGO
produces more diversified predictions so that it has

XLNet: Generalized Autoregressive Pretraining
for Language Understanding

Zhilin Yang⇤1, Zihang Dai⇤12, Yiming Yang1, Jaime Carbonell1,
Ruslan Salakhutdinov1, Quoc V. Le2

1Carnegie Mellon University, 2Google Brain
{zhiliny,dzihang,yiming,jgc,rsalakhu}@cs.cmu.edu, qvl@google.com

Abstract

With the capability of modeling bidirectional contexts, denoising autoencoding
based pretraining like BERT achieves better performance than pretraining ap-
proaches based on autoregressive language modeling. However, relying on corrupt-
ing the input with masks, BERT neglects dependency between the masked positions
and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we
propose XLNet, a generalized autoregressive pretraining method that (1) enables
learning bidirectional contexts by maximizing the expected likelihood over all
permutations of the factorization order and (2) overcomes the limitations of BERT
thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas
from Transformer-XL, the state-of-the-art autoregressive model, into pretraining.
Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and
achieves state-of-the-art results on 18 tasks including question answering, natural
language inference, sentiment analysis, and document ranking.1.

1 Introduction

Unsupervised representation learning has been highly successful in the domain of natural language
processing [7, 19, 24, 25, 10]. Typically, these methods first pretrain neural networks on large-scale
unlabeled text corpora, and then finetune the models or representations on downstream tasks. Under
this shared high-level idea, different unsupervised pretraining objectives have been explored in
literature. Among them, autoregressive (AR) language modeling and autoencoding (AE) have been
the two most successful pretraining objectives.

AR language modeling seeks to estimate the probability distribution of a text corpus with an au-
toregressive model [7, 24, 25]. Specifically, given a text sequence x = (x1, · · · , xT), AR language
modeling factorizes the likelihood into a forward product p(x) =

QT
t=1 p(xt | x<t) or a backward

one p(x) =
Q1

t=T p(xt | x>t). A parametric model (e.g. a neural network) is trained to model each
conditional distribution. Since an AR language model is only trained to encode a uni-directional con-
text (either forward or backward), it is not effective at modeling deep bidirectional contexts. On the
contrary, downstream language understanding tasks often require bidirectional context information.
This results in a gap between AR language modeling and effective pretraining.

In comparison, AE based pretraining does not perform explicit density estimation but instead aims to
reconstruct the original data from corrupted input. A notable example is BERT [10], which has been
the state-of-the-art pretraining approach. Given the input token sequence, a certain portion of tokens
are replaced by a special symbol [MASK], and the model is trained to recover the original tokens from
the corrupted version. Since density estimation is not part of the objective, BERT is allowed to utilize

⇤Equal contribution. Order determined by swapping the one in [9].
1Pretrained models and code are available at https://github.com/zihangdai/xlnet

Preprint. Under review.

ar
X

iv
:1

90
6.

08
23

7v
1

 [c
s.C

L]
 1

9
Ju

n
20

19

XLNet: Generalized Autoregressive Pretraining
for Language Understanding

Zhilin Yang⇤1, Zihang Dai⇤12, Yiming Yang1, Jaime Carbonell1,
Ruslan Salakhutdinov1, Quoc V. Le2

1Carnegie Mellon University, 2Google Brain
{zhiliny,dzihang,yiming,jgc,rsalakhu}@cs.cmu.edu, qvl@google.com

Abstract

With the capability of modeling bidirectional contexts, denoising autoencoding
based pretraining like BERT achieves better performance than pretraining ap-
proaches based on autoregressive language modeling. However, relying on corrupt-
ing the input with masks, BERT neglects dependency between the masked positions
and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we
propose XLNet, a generalized autoregressive pretraining method that (1) enables
learning bidirectional contexts by maximizing the expected likelihood over all
permutations of the factorization order and (2) overcomes the limitations of BERT
thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas
from Transformer-XL, the state-of-the-art autoregressive model, into pretraining.
Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and
achieves state-of-the-art results on 18 tasks including question answering, natural
language inference, sentiment analysis, and document ranking.1.

1 Introduction

Unsupervised representation learning has been highly successful in the domain of natural language
processing [7, 19, 24, 25, 10]. Typically, these methods first pretrain neural networks on large-scale
unlabeled text corpora, and then finetune the models or representations on downstream tasks. Under
this shared high-level idea, different unsupervised pretraining objectives have been explored in
literature. Among them, autoregressive (AR) language modeling and autoencoding (AE) have been
the two most successful pretraining objectives.

AR language modeling seeks to estimate the probability distribution of a text corpus with an au-
toregressive model [7, 24, 25]. Specifically, given a text sequence x = (x1, · · · , xT), AR language
modeling factorizes the likelihood into a forward product p(x) =

QT
t=1 p(xt | x<t) or a backward

one p(x) =
Q1

t=T p(xt | x>t). A parametric model (e.g. a neural network) is trained to model each
conditional distribution. Since an AR language model is only trained to encode a uni-directional con-
text (either forward or backward), it is not effective at modeling deep bidirectional contexts. On the
contrary, downstream language understanding tasks often require bidirectional context information.
This results in a gap between AR language modeling and effective pretraining.

In comparison, AE based pretraining does not perform explicit density estimation but instead aims to
reconstruct the original data from corrupted input. A notable example is BERT [10], which has been
the state-of-the-art pretraining approach. Given the input token sequence, a certain portion of tokens
are replaced by a special symbol [MASK], and the model is trained to recover the original tokens from
the corrupted version. Since density estimation is not part of the objective, BERT is allowed to utilize

⇤Equal contribution. Order determined by swapping the one in [9].
1Pretrained models and code are available at https://github.com/zihangdai/xlnet

Preprint. Under review.

ar
X

iv
:1

90
6.

08
23

7v
1

 [c
s.C

L]
 1

9
Ju

n
20

19

???

BERT

• Motivation of BERT: utilize bidirectional context

• Solution of BERT: denoising auto-encoder

• Problem of BERT:

• pretrain-finetune discrepancy (the mask symbol)

• Independent assumption (non-autoregressive)

XLNet
• Left-to-right ? No

• Right-to-left ? No

• Both ? No

• All possible factorization orders

Benefits

• Still an auto-regressive model

• Learn to utilize bidirectional context

• No data corruption, no pretrain-finetune discrepancy

• No independent assumption, more expressive

Lesson
• Given aforementioned papers, the idea of XLNet seems

very natural.

• It is not hard to make a BIG NEWS if we

• Always think of fundamental problems

• Read some good papers

• Have TPUs

Other Techniques

• Transformer-XL

• Partial prediction

• only predict the last tokens in a factorization order

• Span-based prediction

• mask a consecutive span

Ablation Study

Model RACE SQuAD2.0 MNLI SST-2
F1 EM m/mm

1 BERT-Base 64.3 76.30 73.66 84.34/84.65 92.78
2 DAE + Transformer-XL 65.03 79.56 76.80 84.88/84.45 92.60
3 XLNet-Base (K = 7) 66.05 81.33 78.46 85.84/85.43 92.66
4 XLNet-Base (K = 6) 66.66 80.98 78.18 85.63/85.12 93.35
5 - memory 65.55 80.15 77.27 85.32/85.05 92.78
6 - span-based pred 65.95 80.61 77.91 85.49/85.02 93.12
7 - bidirectional data 66.34 80.65 77.87 85.31/84.99 92.66
8 + next-sent pred 66.76 79.83 76.94 85.32/85.09 92.89

Table 6: Ablation study. The results of BERT on RACE are taken from [39]. We run BERT on the other datasets
using the official implementation and the same hyperparameter search space as XLNet. K is a hyperparameter
to control the optimization difficulty (see Section 2.3). All models are pretrained on the same data.

3.6 ClueWeb09-B Dataset

Following the setting in previous work [8], we use the ClueWeb09-B dataset to evaluate the perfor-
mance on document ranking. The queries were created by the TREC 2009-2012 Web Tracks based on
50M documents and the task is to rerank the top 100 documents retrieved using a standard retrieval
method. Since document ranking, or ad-hoc retrieval, mainly concerns the low-level representations
instead of high-level semantics, this dataset serves as a testbed for evaluating the quality of word
embeddings. We use a pretrained XLNet to extract word embeddings for the documents and queries
without finetuning, and employ a kernel pooling network [37] to rank the documents. According to
Table 5, XLNet substantially outperforms the other methods, including a BERT model that uses the
same training procedure as ours. This illustrates that XLNet learns better low-level word embeddings
than BERT. Note that for fair comparison we exclude the results (19.55 in ERR@20, slightly worse
than ours) in [36] as it uses additional entity-related data.

3.7 Ablation Study

We perform an ablation study to understand the importance of each design choice based on four
datasets with diverse characteristics. Specifically, there are three main aspects we hope to study:

• The effectiveness of the permutation language modeling objective, especially compared to the
denoising auto-encoding objective used by BERT.

• The importance of using Transformer-XL as the backbone neural architecture and employing
segment-level recurrence (i.e. using memory).

• The necessity of some implementation details including span-based prediction, the bidirectional
input pipeline, and next-sentence prediction.

With these purposes in mind, in Table 6, we compare 6 XLNet-Base variants with different implemen-
tation details (rows 3 - 8), the original BERT-Base model (row 1), and an additional Transformer-XL
baseline trained with the denoising auto-encoding (DAE) objective used in BERT but with the bidi-
rectional input pipeline (row 2). For fair comparison, all models are based on a 12-layer architecture
with the same model hyper-parameters as BERT-Base and are trained on only Wikipedia and the
BooksCorpus. All results reported are the median of 5 runs.

Examining rows 1 - 4 of Table 6, we see the two full XLNet-Base models trained with different values
of K significantly outperform both BERT and the DAE trained Transformer-XL across tasks, showing
the superiority of the permutation language modeling objective. Meanwhile, it is also interesting
to see that the DAE trained Transformer-XL achieves better performance than BERT on tasks with
long text such as RACE and SQuAD, suggesting the excellence of Transformer-XL in language
modeling also benefits pretraining. Next, if we remove the memory caching mechanism (row 5), the
performance clearly drops, especially for RACE which involves the longest context among the 4 tasks.
In addition, rows 6 - 7 show that both span-based prediction and the bidirectional input pipeline play
important roles in XLNet. Finally, we unexpectedly find the the next-sentence prediction objective
proposed in the original BERT does not necessarily lead to an improvement in our setting. Instead, it
tends to harm the performance except for the RACE dataset. Hence, when we train XLNet-Large, we
exclude the next-sentence prediction objective.

11

• The new permutation LM objective is superior.

• The transformer-XL, span-based pred, etc also matter.

Discussions

• Why token-by-token?

• Can we do deletion and substitution?

