Rethinking the Generation Orders of Sequence

jcykcai

Why left-to-right?

- Humans do it
- But humans also do
 - First generate some abstract of what to say
 - Then serialize them

The Importance of Generation Order in Language Modeling

Nicolas Ford*Daniel DuckworthMohammad NorouziGeorge E. DahlGoogle Brain{nicf,duckworthd,mnorouzi,gdahl}@google.com

EMNLP18

Goal

- Better generation order?
- Wait! Does it really matter?

Framework

- Two-pass language models
 - Vocabulary partition: first-pass and second-pass tokens
 - $Y = Y^{1} + Y^{2}$
 - Y^1 (template): only consist of first-pass tokens and special placeholders
 - Y^2 the rest second-pass tokens

Order Variants

sentence	common first	rare first	function first	content first	odd first
" all you need to do	" all you to if you	need do	" all you to if you	need do	" all you need
if you want the na-	the 's on	want nation	the 's on your	want nation press	you the nation 's
tion 's press camped	is to you had a	press camped your	is to you a	camped doorstep	press camped on your
on your doorstep is to	[UNK] in , " he	doorstep say	in , " he in his	say once had	doorstep say you
say you once had a	in his [EOS]	once 1947	[EOS]	[UNK] 1947	once had
[UNK] in 1947, "		noted memorably		noted memorably	" noted his
he noted memorably in		diary [EOS]		diary [EOS]	[EOS]
his diary . [EOS]					
the team announced	the $__$ $__$ that the $__$,	team announced	the that the	team announced	the team announced
thursday that the 6-	[UNK] will in	thursday 6-foot-1	, will in	thursday 6-foot-1	the 6-foot-1
foot-1, [UNK] starter	the [EOS]	starter remain	through the	[UNK] starter	will remain
will remain in detroit		detroit through	[EOS]	remain detroit	through the 2013 $_$.
through the 2013 sea-		2013 season [EOS]		2013 season [EOS]	[EOS]
son . [EOS]					
scotland 's next game	'sis athe	scotland next game	's is a against	scotland next game	's next game
is a friendly against	at on [EOS]	friendly against	the at on	friendly	the czech republic at
the czech republic at		czech republic ham-	[EOS]	czech republic ham-	hampden on 3 march.
hampden on 3 march.		pden 3 march		pden 3 march	[EOS]
[EOS]		[EOS]		[EOS]	
of course, millions of	of , of	course millions	of , of a	course millions	of of additional
additional homeown-	a : they of	additional homeown-	: they of "	additional home-	big
ers did make a big mis-	"" and [UNK]	ers did make big	" and to	owners did make	they advantage of
take : they took ad-	to they 't	mistake took ad-	they [EOS]	big mistake	" liar " and other
vantage of " liar loans	[EOS]	vantage liar loans		took advantage	deals buy homes
" and other [UNK]		other deals		liar loans other	they couldn afford .
deals to buy homes		buy homes couldn		[UNK] deals buy	[EOS]
they couldn 't afford .		afford [EOS]		homes couldn 't	
[EOS]				afford [EOS]	

Language Models

• The total probability of a sentence y is

 $p(\mathbf{y}) = p_1(\mathbf{y}^{(1)}) p_2(\mathbf{y}^{(2)} | \mathbf{y}^{(1)})$

- The template y^1 is a deterministic function of y
- Template decoder + Template encoder + second-phrase decoder

Model	Train	Validation	Test
odd first	39.925	45.377	45.196
rare first	38.283	43.293	43.077
content first	38.321	42.564	42.394
common first	36.525	41.018	40.895
function first	36.126	40.246	40.085
baseline	38.668	41.888	41.721
enhanced baseline	35.945	39.845	39.726

- PPL on LM1B
- Content-dependent generation orders do have a large effect on model quality
- Function-first is the best (common-first is the second)
 - It is easier to first decide syntactic structure
 - Delay the rare tokens

Recent Advances

https://arxiv.org/pdf/1902.01370.pdf https://arxiv.org/pdf/1902.02192.pdf https://arxiv.org/pdf/1902.03249.pdf

Insertion Transformer: Flexible Sequence Generation via Insertion Operations

Mitchell Stern¹² William Chan¹ Jamie Kiros¹ Jakob Uszkoreit¹

ICML19

Model

- Architecture
 - Transformer with full self-attention decoder
 - Slot representations
- Content-location distribution
 - What to insert & where to insert
 - $p(c, l \mid x, \hat{y_t}) = \text{InsertionTransformer}(x, \hat{y_t}).$

Termination

- Termination conditions
 - Sequence finalization
 - Slot finalization (enable parallel inference)

	Serial generation:		Parallel generation:			
t	Canvas	Insertion	t	Canvas	Insertions	
0	[]	(ate, 0)	0	[]	(ate, 0)	
1	[ate]	(together, 1)	1	[ate]	(friends, 0), (together, 1)	
2	[ate, together]	(friends, 0)	2	[friends, ate, together]	(three $, 0), ($ lunch $, 2)$	
3	[friends, ate, together]	(three $, 0)$	3	[three, friends, ate, lunch, together]	$(\langle \text{EOS} \rangle, 5)$	
4	[three, friends, ate, together]	(lunch, 3)				
5	[three, friends, ate, lunch, together]	$(\langle EOS \rangle, 5)$				

Figure 1. Examples demonstrating how the clause "three friends ate lunch together" can be generated using our insertion framework. On the left, a serial generation process is used in which one insertion is performed at a time. On the right, a parallel generation process is used with multiple insertions being allowed per time step. Our model can either be trained to follow specific orderings or to maximize entropy over all valid actions. Some options permit highly efficient parallel decoding, as shown in our experiments.

Training

- The form of single training instances
 - Sample generation steps (partial sentences)
- Variants
 - Left-to-right
 - Balanced Binary Tree
 - Uniform

Results

Loss	Termination	BLEU (+EOS)	BLEU (+EOS)	BLEU (+EOS)
			+Distillation	+Distillation, +Parallel
Left-to-Right	Sequence	20.92 (20.92)	23.29 (23.36)	-
Binary Tree ($\tau = 0.5$)	Slot	20.35 (21.39)	24.49 (25.55)	25.33 (25.70)
Binary Tree ($\tau = 1.0$)	Slot	21.02 (22.37)	24.36 (25.43)	25.43 (25.76)
Binary Tree ($\tau = 2.0$)	Slot	20.52 (21.95)	24.59 (25.80)	25.33 (25.80)
Uniform	Sequence	19.34 (22.64)	22.75 (25.45)	_
Uniform	Slot	18.26 (22.16)	22.39 (25.58)	24.31 (24.91)

- +Parallel is even better!
 - Greedy search may suffer from issues related to local search that are circumvented by making multiple updates to the hypothesis at once.

Results

Model	BLEU	Iterations
Autoregressive Left-to-Right		
Transformer (Vaswani et al., 2017)	27.3	n
Semi-Autoregressive Left-to-Right		
SAT (Wang et al., 2018)	24.83	n/6
Blockwise Parallel (Stern et al., 2018)	27.40	pprox n/5
Non-Autoregressive		
NAT (Gu et al., 2018)	17.69	1
Iterative Refinement (Lee et al., 2018)	21.61	10
Our Approach (Greedy)		
Insertion Transformer + Left-to-Right	23.94	n
Insertion Transformer + Binary Tree	27.29	n
Insertion Transformer + Uniform	27.12	n
Our Approach (Parallel)		
Insertion Transformer + Binary Tree	27.41	$\approx \log_2 n$
Insertion Transformer + Uniform	26.72	$\approx \log_2 n$

- Comparable performance
- Fewer generation iteration => faster?

Limitations

- Must recompute the decoder hidden stat for each position after each insertion
- Auto-regressive vs. non-autoregressive
 - Expressive power vs. parallel decoding

Non-Monotonic Sequential Text Generation

Goal

- Learn a good order without
 - specifying an order in advance.
 - additional annotation

Formulation

 Generating a word at an arbitrary position, then recursively generating words to its left and words to its right.

Formulation

- The full generation is performed in a level-order traversal. (green)
- The output is read off from an in-order traversal. (blue)

Imitation Learning

- Learn a generation policy that mimics the actions of an oracle generation policy
- Oracle policies
 - Uniform oracle: similar to quick-sort
 - Coaching oracle: reinforce the policy's own preferences $\pi^*_{\text{coaching}}(a|s) \propto \pi^*_{\text{uniform}}(a|s) \pi(a|s)$
 - Annealed coaching oracle: $\pi^*_{\text{annealed}}(a|s) = \beta \pi^*_{\text{uniform}}(a|s) + (1-\beta)\pi^*_{\text{coaching}}(a|s)$

Imitation Learning

- Annealed coaching oracle
 - Random oracle encourages exploration
 - Reinforcement leads to a specific generation order
- A special case for comparison
 - Deterministic Left-to-Right Oracle (standard order)

Policy Networks

- Partial binary tee is considered as a flat sequence of nodes in a level-order traversal.
- Essentially, still a sequence model
- Transformer, LSTM can be applied.

• Language Modeling on Persona-Chat dataset

Oracle	%Novel	%Unique	Avg. Tokens	Avg. Span	BLEU
left-right	17.8	97.0	11.9	1.0	47.0
uniform	98.3	99.9	13.0	1.43	40.0
annealed	93.1	98.2	10.6	1.31	56.2
Validation	97.0	100	12.1	-	-

Table 1. Statistics computed over 10,000 sampled sentences (inorder traversals of sampled trees with $\langle end \rangle$ tokens removed) for policies trained on Persona-Chat. A sample is novel when it is not in the training set. Percent unique is the cardinality of the set of sampled sentences divided by the number of sampled sentences.

Sentence: i wish you could study lol . i work a lot . Gen. Order: . you . i study i wish could lol a work lot Sentence: oh , i am a big fan of dairy myself . i am a receptionist . Gen. Order: . i . , am i oh a am of receptionist fan dairy a big myself

- By POS analysis on different levels of the trees
 - Punctuation-first => easy-first
 - Pronoun before noun and verb => like dependency tree

Machine translation

		Validatio	n		Test				
Oracle	BLEU (BP)	Meteor	YiSi	Ribes	BLEU (BP)	Meteor	YiSi	Ribes	
left-right	32.30 (0.95)	31.96	69.41	84.80	28.00 (1.00)	30.10	65.22	82.29	
uniform	24.50 (0.84)	27.98	66.40	82.66	21.40 (0.86)	26.40	62.41	80.00	
annealed +tree-encoding +⟨end⟩-tuning	$\begin{array}{c} 26.80 & (0.88) \\ 28.00 & (0.86) \\ 29.10 & (0.99) \end{array}$	29.67 30.15 31.00	67.88 68.43 68.81	83.61 84.36 83.51	$\begin{array}{c} 23.30 \ (0.91) \\ 24.30 \ (0.91) \\ 24.60 \ (1.00) \end{array}$	27.96 28.59 29.30	63.38 63.87 64.18	80.91 81.64 80.53	

- BLEU focuses on getting a large number of 4-grams correct
- The other three measures are less sensitive to exact word order and focus more on semantics.

Limitations

- Binary-tree => N-ary tree
- Only produce a subset of all possible generation orders
 - Projective generation, no crossing of two edges when nodes are lined up following the ignorer traversal.

Insertion-based Decoding with automatically Inferred Generation Order

Jiatao Gu^{\dagger}, Qi Liu^{\dagger} and Kyunghyun Cho^{\dagger ‡}

[†]Facebook AI Research
[‡]New York University, CIFAR Azrieli Global Scholar
[†]{jgu, qiliu, kyunghyuncho}@fb.com

Goal

• How can we decode a sequence in its best order?

Model Design

- Insertion-based (again)
 - Joint prediction of position and token
- The problem of absolute position
 - Changes over decoding time (recomputing is costly!)

Relative Positions

$$\boldsymbol{r}_{i,j}^{t} = \begin{cases} -1 & z_{j}^{t} > z_{i}^{t} \text{ (left)} \\ 0 & z_{j}^{t} = z_{i}^{t} \text{ (middle)} \\ 1 & z_{j}^{t} < z_{i}^{t} \text{ (right)} \end{cases} \qquad R^{t+1} = \begin{bmatrix} & & \boldsymbol{r}_{t+1,0}^{t} \\ R^{t} & & \vdots \\ & & \boldsymbol{r}_{t+1,t}^{t+1} \\ \hline -\boldsymbol{r}_{t+1,0}^{t+1} & \cdots & -\boldsymbol{r}_{t+1,t}^{t+1} & 0 \end{bmatrix}$$

Decoding

Learning

- Maximize the evident lower bound (ELBO)
- Approximate posterior distribution of generation orders $q(\pi | x, y)$

$$\mathcal{L}_{\text{ELBO}} = \underset{\boldsymbol{\pi} \sim q}{\mathbb{E}} \log p_{\theta}(\boldsymbol{y}_{\boldsymbol{\pi}} | \boldsymbol{x}) + \mathcal{H}(q)$$

$$= \underset{\boldsymbol{r}_{2:T+1} \sim q}{\mathbb{E}} \left(\underbrace{\sum_{t=1}^{T+1} \underbrace{\log p_{\theta}(y_{t+1} | y_{0:t}, \boldsymbol{r}_{0:t}, x_{1:T'})}_{\text{Word Prediction Loss}} \right)$$

$$+ \underbrace{\sum_{t=1}^{T} \underbrace{\log p_{\theta}(\boldsymbol{r}_{t+1} | y_{0:t+1}, \boldsymbol{r}_{0:t}, x_{1:T'})}_{\text{Position Prediction Loss}} \right) + \mathcal{H}(q).$$

Searched Adaptive Order (SAO)

• $q(\pi | x, y)$ is approximated by beam search

$$\mathcal{L}_{SAO} = \frac{1}{B} \sum_{\pi \in \mathcal{B}} \log p_{\theta}(\boldsymbol{y_{\pi}} | \boldsymbol{x})$$

where we assume
$$q(\boldsymbol{\pi}|\boldsymbol{x},\boldsymbol{y}) = \begin{cases} 1/B & \boldsymbol{\pi} \in \mathcal{B} \\ 0 & \text{otherwise} \end{cases}$$
.

Pre-defined Order	Descriptions
Left-to-right (L2R)	Generate words from left to right. (Wu et al., 2018)
Right-to-left (R2L)	Generate words from right to left. (Wu et al., 2018)
Odd-Even (ODD)	Generate words at odd positions from left to right, then generate even positions. (Ford et al., 2018)
Balanced-tree (BLT)	Generate words with a top-down left-to-right order from a balanced binary tree. (Stern et al., 2019)
Syntax-tree (SYN)	Generate words with a top-down left-to-right order from the dependency tree. (Wang et al., 2018b)
Common-First (CF)	Generate all common words first from left to right, and then generate the others. (Ford et al., 2018)
Rare-First (RF)	Generate all rare words first from left to right, and then generate the remaining. (Ford et al., 2018)
Random (RND)	Generate words in a random order shuffled every time the example was loaded.

		WMT16	$\mathrm{Ro} ightarrow \mathrm{En}$		WMT18 En \rightarrow Tr				KFTT $En \rightarrow Ja$			
Model	BLEU	Ribes	Meteor	TER	BLEU	Ribes	Meteor	TER	BLEU	Ribes	Meteor	TER
RND	20.20	79.35	41.00	63.20	03.04	55.45	19.12	90.60	17.09	70.89	35.24	70.11
L2R	31.82	83.37	52.19	50.62	14.85	69.20	33.90	71.56	30.87	77.72	48.57	59.92
R2L	31.62	83.18	52.09	50.20	14.38	68.87	33.33	71.91	30.44	77.95	47.91	61.09
ODD	30.11	83.09	50.68	50.79	13.64	68.85	32.48	72.84	28.59	77.01	46.28	60.12
BLT	24.38	81.70	45.67	55.38	08.72	65.70	27.40	77.76	21.50	73.97	40.23	64.39
SYN	29.62	82.65	50.25	52.14			_				_	
CF	30.25	83.22	50.71	50.72	12.04	67.61	31.18	74.75	28.91	77.06	46.46	61.56
RF	30.23	83.29	50.72	51.73	12.10	67.44	30.72	73.40	27.35	76.40	45.15	62.14
SAO	32.47	84.10	53.00	49.02	15.18	70.06	34.60	71.56	31.91	77.56	49.66	59.80

XLNet: Generalized Autoregressive Pretraining for Language Understanding

Zhilin Yang^{*1}, Zihang Dai^{*12}, Yiming Yang¹, Jaime Carbonell¹, Ruslan Salakhutdinov¹, Quoc V. Le² ¹Carnegie Mellon University, ²Google Brain {zhiliny,dzihang,yiming,jgc,rsalakhu}@cs.cmu.edu, qvl@google.com

BERT

- Motivation of BERT: utilize bidirectional context
- Solution of BERT: denoising auto-encoder
- Problem of BERT:
 - pretrain-finetune discrepancy (the mask symbol)
 - Independent assumption (non-autoregressive)

XLNet

- Left-to-right ? No
- Right-to-left ? No
- Both? No
- All possible factorization orders

Benefits

- Still an auto-regressive model
 - Learn to utilize bidirectional context
 - No data corruption, no pretrain-finetune discrepancy
 - No independent assumption, more expressive

Lesson

- Given aforementioned papers, the idea of XLNet seems very natural.
- It is not hard to make a **BIG NEWS** if we
 - Always think of fundamental problems
 - Read some good papers
 - Have TPUs

Other Techniques

- Transformer-XL
- Partial prediction
 - only predict the last tokens in a factorization order
- Span-based prediction
 - mask a consecutive span

Ablation Study

#	Model	RACE	SQuAD2.0		MNLI	SST-2
			F1	EM	m/mm	
1	BERT-Base	64.3	76.30	73.66	84.34/84.65	92.78
2	DAE + Transformer-XL	65.03	79.56	76.80	84.88/84.45	92.60
3	XLNet-Base ($K = 7$)	66.05	81.33	78.46	85.84/85.43	92.66
4	XLNet-Base ($K = 6$)	66.66	80.98	78.18	85.63/85.12	93.35
5	- memory	65.55	80.15	77.27	85.32/85.05	92.78
6	- span-based pred	65.95	80.61	77.91	85.49/85.02	93.12
7	- bidirectional data	66.34	80.65	77.87	85.31/84.99	92.66
8	+ next-sent pred	66.76	79.83	76.94	85.32/85.09	92.89

- The new permutation LM objective is superior.
- The transformer-XL, span-based pred, etc also matter.

Discussions

- Why token-by-token?
- Can we do deletion and substitution?