
Some Recent Advance on
Edit Based Generation Models

Jiachen Du1,2

1. Harbin Institute of Technology, Shenzhen
2. Tencent AI Lab, NLP Center

2019.05.28

Overview

• Review of Edit Based Generation Models

• LEARNING TO REPRESENT EDITS (ICLR 2019)

• Text Infilling (arXiv)

• TIGS: An Inference Algorithm for Text Infilling with Gradient
Search (arXiv)

Review of Edit Based Generation Models

Response Generation by Context-aware Prototype Editing
Wu et al. 2019 (AAAI)

Generating Sentences by Editing Prototypes
Guu et al. 2018 (TACL)

𝑒 =

𝑤∈𝐼

𝛽𝑤Ψ 𝑤 ⊕

𝑤′∈𝐷

𝛾𝑤′Ψ(𝑤′)

Insertion Words Deletion Words

The core idea is to use distributed vector to represent the edit,
and leverage the edit vector to

Review of Edit Based Generation Models

Generating Sentences by Editing Prototypes
Guu et al. 2018 (TACL)

LSTM decoder concatenating z to the
input of the decoder at each time step

a sample from q is obtained by adding von-Mises Fisher
(vMF) noise, and we perturb the magnitude of e by adding
uniform noise.

Review of Edit Based Generation Models

Response Generation by Context-aware Prototype Editing
Wu et al. 2019 (AAAI)

The edit vector is generated by summing the
insertion and deletion words in context.

Some Thinking about Edit Based Generation

• Most works apply the edit changes in vector space by
concatenating the edit vector to decoder’s input. It is not clear how
the model apply the edit change in token level.

• The edit vector only takes consideration of words deleted or
inserted, but ignore the order of these changing words.

• Current edit based generation model focus on sequential editing.
Applying editing to the structural objects (Tree, Graph) may be a
promising idea ?

Introduction

Edit Representation: 𝑓∆ 𝑥−, 𝑥+ maps the editing difference between original text 𝑥− and edited
version 𝑥+.
Neural Editor: 𝛼 𝑥−

′ , 𝑓∆ 𝑥−, 𝑥+ reconstructs edited text from 𝑥− and edit representation 𝑓∆ 𝑥−, 𝑥+ .

◆Distributed edit representation explicitly models the discrete edit operations to have the
property that semantically similar edits have nearby representations in continuous space.

Models – Sequential Editing

Edit Encoder

Neural Editor

𝑓∆ 𝑥−, 𝑥+

𝑥− 𝑥+

𝐿𝑜𝑠𝑠 =
1

𝑁

𝑖

−log𝑃𝛼(𝑥+|𝑥−, 𝑓∆ 𝑥−, 𝑥+)

𝑥−
𝑥+

Alignment token

bi-LSTM

𝑥−
.....

LSTM

↔ : Replacement
− : Deletion
+ : Insertion
= : Unchanged

Semantic similar changes are
clustered in the edit vector space.

Models – Graph to Tree Editing

Edit Encoder

Neural Editor

𝑓∆ 𝑥−, 𝑥+

𝑥− 𝑥+

.....

Experiments

• Natural Language Edits: WikiatomicEdit (Faruqui et al., 2018
EMNLP) : Contains Wikipedia dump document and corresponding
editing history. They sampled 1040K edits from the English split
the samples into 1000K/20K/20K train-valid-test sets.

• Source Code Edits: They clone a set of 54 C# projects on GitHub.
They selected all changesin the projects that are no more than 3
lines long and whose surrounding 3 lines of code before. They
splited the dataset into 91,372 / 10,176 / 10,176 samples as
train/valid/test sets.

Visualization of Edit Vector

Nearest Neighbors of Edited Examples
Five nearest neighbors of 200 randomly sampled seed edits from our training set, using both our
trained sequence-to-sequence editing model with sequential edit encoder, as well as a simple
bag-of-words baseline based on TF-IDF scores.

Nearest Neighbors of Edited Examples

each fixer category F of semantically similar edits, They randomly select
a seed edit from one category of bug fixes, and use its edit representation to
predict the updated code for all examples

𝑓∆ 𝑥−, 𝑥+

Summary

• An explainable edit representation is proposed and some
experiments are conducted to visualize the edit vector.

• Instead of representing the change by Bag-of-Word, the
editing token sequence is used to model the editing procedure.

• Interesting downstream application …

Some Inspiration

• It is hard to directly apply this model to response generation,
since the explicit editing pairs is missing. However, maybe it
can be applied it to knowledge enhanced dialogue, i.e.

Question : <TOPIC> 100 metres <EOS> <MESSAGE> usain bolt is the best 100 m sprinter to ever
live <EOS>

Answer : <RESPONSE> yeah , that 's true . he is the first person to hold both the 100 meter and 200
meters records . <EOS>

Generated: he is the first person to hold the the 100 meter 200

Checked: <CHECKED_SENT> he is the first person to hold both the 100 metres and 200 metres world
records since fully automatic time became mandatory . <EOS>

Introduction

Given a text template where portions of a body of text are deleted or redacted, we want to fill in the
blanks properly to produce complete, semantically coherent and meaningful text.

Different

Model

Evaluation

Summary

The proposed task is lack of novelty however, the experiments
validate that the self attention model is capable of generating
continuous phrases for multiple slots.

It inspires me that, for knowledge-grounded dialogue, maybe we
can firstly generate a response with slot by a ordinary Seq2seq
model, then use the given knowledge to fill the slots.

Text Infilling in Dialogues

Different from unconstraint text infilling, Dialogue text
infilling is a more practical problem.

Given a pair of text infilling data 𝑥, 𝑦𝔹 the method aims
at finding an infilled word set ො𝑦 = { ො𝑦1, ො𝑦1, … , ො𝑦|𝔹|}.

The goal is to develop an inference algorithm to fill the
slots when given a trained seq2seq model.

Text Infilling with Gradient Search

Experiments

Summary

How to generate the infilled text sequence with mask tags is still a
huge challenge for applying this model to dialogue generation.

FIN

