Unsupervised Discrete Pattern Mining for Text Generation

Deng Cai

References

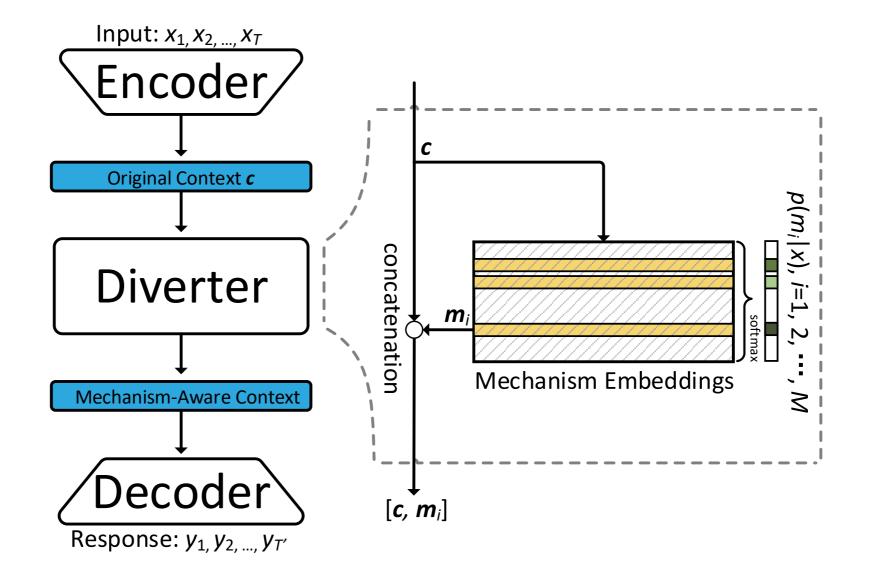
- AAAI17 Mechanism-Aware Neural Machine for Dialogue Response Generation
- ACL18 Unsupervised Discrete Sentence Representation Learning for Interpretable Neural Dialog Generation
- EMNLP18 Learning Neural Templates for Text Generation

Neural Text Generation

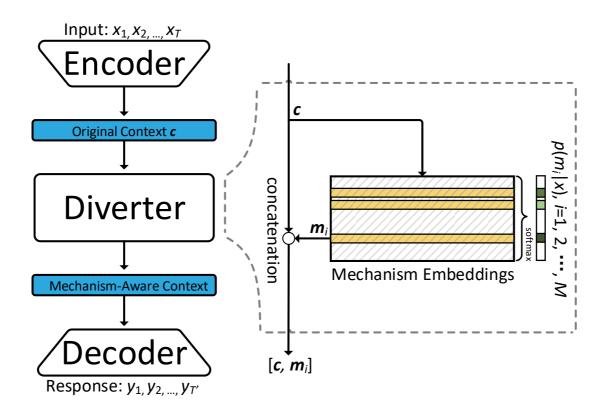
- Black-box nature of generic encoder-decoder models.
- Two Lost desiderata
 - Interpretable
 - Controllable

Discrete Pattern

- Discrete features (categories) that characterize a piece of text.
 - E.g., sentiments, topics, acts, templates.
- Discrete pattern recognition often brings about interpretability and controllability, which are in desperate need.
 - It also solves diversity and informativeness


Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Mechanism-Aware Neural Machine for Dialogue Response Generation


Ganbin Zhou,^{1,2} **Ping Luo**,¹ **Rongyu Cao**,^{1,2} **Fen Lin**,³ **Bo Chen**,³ **Qing He**¹

 ¹Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China. {zhouganbin, caory}@ics.ict.ac.cn, {luop, heqing}@ict.ac.cn
 ²University of Chinese Academy of Sciences, Beijing 100049, China.
 ³Pattern Recognition Center, WeChat Technical Architecture Department, Tencent, China.

A Latent Variable

A Latent Variable

$$\sum_{(\boldsymbol{x},\boldsymbol{y})\in\mathcal{D}^{c}} \log p(\boldsymbol{y}|\boldsymbol{x}) = \sum_{(\boldsymbol{x},\boldsymbol{y})\in\mathcal{D}^{c}} \log \sum_{i=1}^{M} p(m_{i}|\boldsymbol{x}) p(\boldsymbol{y}|m_{i},\boldsymbol{x})$$

$$p(\boldsymbol{y}, m_l | \boldsymbol{x}) = p(m_l | \boldsymbol{x}) p(\boldsymbol{y} | m_l, \boldsymbol{x})$$

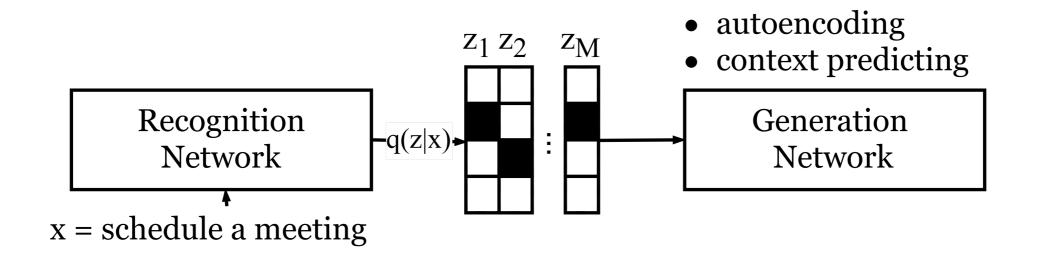
3402

Results

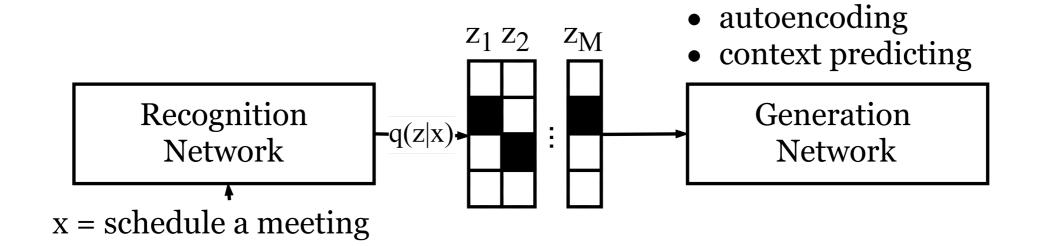
Questions	Mechanism 1	Mechanism 2	Mechanism 3	Mechanism 4
我要坐地铁回家	好的,路上注意安	真是个不错的选择	坐车去哪里	坐车一定要注意安
I take subway back	Ok, be safe on the	That's a good choice	Where are you going	Be careful on the
home	subway		on the subway	subway
生活中怎样感到开心	开心就来和我聊天	看来你今天心情很	有什么开心的事情	和我聊天就很开心
快乐		不错		
How do I feel happy in	Have a talk with me if	You seem to be happy	What are the happy	Talk with me and you
my life	you are happy	today	things you have	will be happy
			experieced	
明天考试、求安慰	好好复习就好了	我会为你加油的	你要去哪里试试	我会一直安慰你的
I have a test tomorrw,	Just work hard on the	I will stand by you	Where are you taking	I will always be on
and I need some solace	reviews		the test	your side
上班好累啊	那就好好休息	要懂得劳逸结合	你是不是累了	上班就是这样
The work is really hard	Take a good rest	You need to balance	Are you tired	That is work
		work and life		

Keyword in m ₁		Keyword in m2		Keyword in m ₃		Keyword in m4	
Chinese	English	Chinese	English	Chinese	English	Chinese	English
看	look	个	a	哪里	where	不会	cannot
好好	ok	看来	seem	?	?	一直	always
还是	still	不错	nice	呀	oh	可是	however
那	that	小	little	公	why	一定	must
注意	attention	还	yet	怎么	how	都	all
自己	self	这样	this	什么	what	陪	company
知道	know	人	person	在	stay	也	also
就	at once	可	may	样子	appearance	会	can
可以	can	微	tiny	想	think	认错	admit
去	go to	对	yes	说	say	很	very

_


-

Unsupervised Discrete Sentence Representation Learning for Interpretable Neural Dialog Generation


Tiancheng Zhao, Kyusong Lee and Maxine Eskenazi

Language Technologies Institute Carnegie Mellon University Pittsburgh, Pennsylvania, USA {tianchez, kyusongl, max+}@cs.cmu.edu

a set of Latent Variables

a set of Latent Variables

 $\mathcal{L}_{\text{LAED}}(\theta_{\mathcal{F}}, \theta_{\pi}) = \mathbb{E}_{q_{\mathcal{R}}(\mathbf{z}|\mathbf{x})p(\mathbf{x}, \mathbf{c})}[\log p_{\pi}(\mathbf{z}|\mathbf{c}) + \log p_{\mathcal{F}}(\mathbf{x}|\mathbf{z}, \mathbf{c})]$

$$\mathcal{L}_{\text{Attr}}(\theta_{\mathcal{F}}) = \mathbb{E}_{q_{\mathcal{R}}(\mathbf{z}|\mathbf{x})p(\mathbf{c},\mathbf{x})}[\log q_{\mathcal{R}}(\mathbf{z}|\mathcal{F}(\mathbf{c},\mathbf{z}))]$$

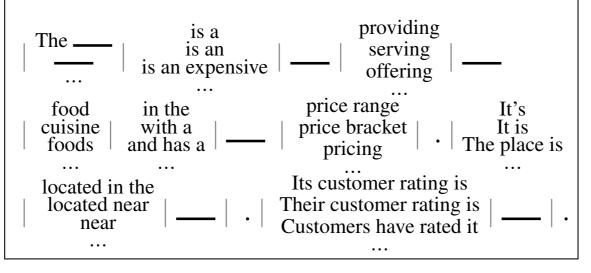
Results

Model	Action	Sample utterance
DI-VAE	scheduling	- sys: okay, scheduling a yoga
		activity with Tom for the 8th at
		2pm.
		- sys: okay, scheduling a meet-
		ing for 6 pm on Tuesday with
		your boss to go over the quar-
		terly report.
	requests	- usr: find out if it 's supposed
		to rain
		- usr: find nearest coffee shop
DI-VST	ask sched-	- usr: when is my football ac-
	ule info	tivity and who is going with
		me?
		- usr: tell me when my dentist
		appointment is?
	requests	- usr: how about other coffee?
		- usr: 11 am please

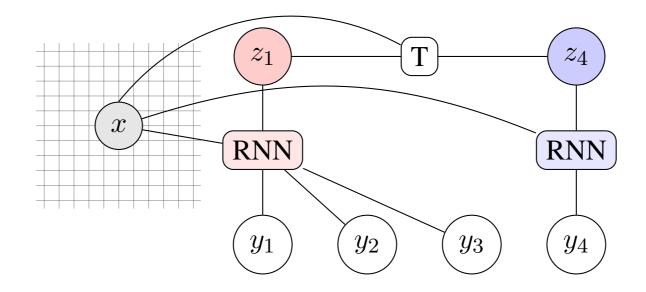
Learning Neural Templates for Text Generation

Sam WisemanStuart M. ShieberAlexander M. RushSchool of Engineering and Applied SciencesHarvard UniversityCambridge, MA, USA{swiseman, shieber, srush}@seas.harvard.edu

a Sequence of Latent Variables

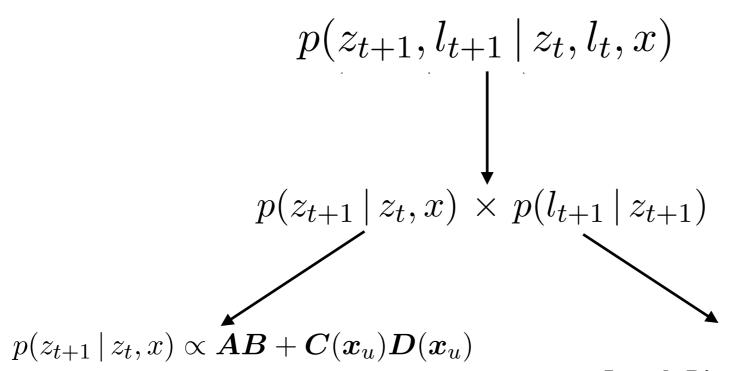

Source Entity: Cotto

type[coffee shop], rating[3 out of 5], food[English], area[city centre], price[moderate], near[The Portland Arms]


System Generation:

<u>Cotto</u> is a <u>coffee shop</u> serving <u>English</u> food in the <u>moderate</u> price range. It is located near <u>The Portland Arms</u>. Its customer rating is <u>3 out of 5</u>.

Neural Template:



a Sequence of Latent Variables

$$p(y, z, l, f \mid x; \theta) = \prod_{t=0}^{T-1} p(z_{t+1}, l_{t+1} \mid z_t, l_t, x)^{f_t}$$
$$\times \prod_{t=1}^{T} p(y_{t-l_t+1:t} \mid z_t, l_t, x)^{f_t},$$

Length Distribution We simply fix all length probabilities $p(l_{t+1} | z_{t+1})$ to be uniform up to a maximum length L.¹

Model Details (Emission)

$$p(y_{t-l_t+1:t} | z_t = k, l_t = l, x) = \prod_{i=1}^{l_t} p(y_{t-l_t+i} | y_{t-l_t+1:t-l_t+i-1}, z_t = k, x) \times (| y_{t-l_t+1:t}, z_t = k, x) \times \mathbf{1}_{\{l_t = l\}}$$

An Autoregressive Variant

$$p(y_{t-l_t+i} = w \mid y_{1:t-l_t+i-1}, z_t = k, x)$$

Results

Travellers Rest Beefeater

name[Travellers Rest Beefeater], customerRating[3 out of 5], area[riverside], near[Raja Indian Cuisine]

1. [Travellers Rest Beefeater]₅₅ [is a]₅₉ $[3 \text{ star}]_{43}$

[restaurant]₁₁ [located near]₂₅ [Raja Indian Cuisine]₄₀ [.]₅₃

2. $[Near]_{31}$ [riverside]₂₉ [,]₄₄ [Travellers Rest Beefeater]₅₅ [serves]₃ [3 star]₅₀ [food]₁ [.]₂

- 3. [Travellers Rest Beefeater]₅₅ [is a]₅₉ [restaurant]₁₂
 [providing]₃ [riverside]₅₀ [food]₁ [and has a]₁₇
 [3 out of 5]₂₆ [customer rating]₁₆ [.]₂ [It is]₈ [near]₂₅
- [Raja Indian Cuisine]₄₀ [.]₅₃
- 4. [Travellers Rest Beefeater]₅₅ [is a]₅₉ [place to eat]₁₂
- [located near]₂₅ [Raja Indian Cuisine]₄₀ [.]₅₃
- 5. [Travellers Rest Beefeater]₅₅ [is a]₅₉ [3 out of 5]₅
- $[rated]_{32}$ $[riverside]_{43}$ $[restaurant]_{11}$ $[near]_{25}$
- [Raja Indian Cuisine]₄₀ [.]₅₃

kenny warren

name: kenny warren, **birth date:** 1 april 1946, **birth name:** kenneth warren deutscher, **birth place:** brooklyn, new york, **occupation:** ventriloquist, comedian, author, **notable work:** book - the revival of ventriloquism in america

- 1. [kenneth warren deutscher]₁₃₂ [(]₇₅ [born]₈₉ [april 1, 1946]₁₀₁ [)]₆₇ [is an american]₈₂ [author]₂₀ [and]₁ [ventriloquist and comedian]₆₉ [.]₈₈
- 2. [kenneth warren deutscher]₁₃₂ [(]₇₅ [born]₈₉ [april 1, 1946]₁₀₁ [)]₆₇ [is an american]₈₂ [author]₂₀ [best known for his]₉₅ [the revival of ventriloquism]₉₆ [.]₈₈
- 3. [kenneth warren]₁₆ ["kenny" warren]₁₁₇ [(]₇₅ [born]₈₉ [april 1, 1946]₁₀₁ [)]₆₇ [is an american]₁₂₇ [ventriloquist, comedian]₂₈ [.]₁₃₃
- 4. [kenneth warren]₁₆ ["kenny" warren]₁₁₇ [(]₇₅ [born]₈₉ [april 1, 1946]₁₀₁ [)]₆₇ [is a]₁₀₄ [new york]₉₈ [author]₂₀ [.]₁₃₃
- 5. [kenneth warren deutscher]₄₂ [is an american]₈₂ [ventriloquist, comedian]₁₁₈ [based in]₁₅ [brooklyn, new york]₈₄ [.]₈₈

Discrete Patterns Mining for Text Generation

unsupervised / semi-supervised

discrete / semi-discrete

single/ multiple latent variable(s)

sequential / hierarchical combinations

Determined before/during generation