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Abstract

To the same utterance, people’s responses in everyday dia-
logue may be diverse largely in terms of content semantics,
speaking styles, communication intentions and so on. Previ-
ous generative conversational models ignore these 1-to-n re-
lationships between a post to its diverse responses, and tend
to return high-frequency but meaningless responses.
In this study we propose a mechanism-aware neural machine
for dialogue response generation. It assumes that there ex-
ists some latent responding mechanisms, each of which can
generate different responses for a single input post. With this
assumption we model different responding mechanisms as
latent embeddings, and develop a encoder-diverter-decoder
framework to train its modules in an end-to-end fashion.
With the learned latent mechanisms, for the first time these
decomposed modules can be used to encode the input into
mechanism-aware context, and decode the responses with the
controlled generation styles and topics. Finally, the experi-
ments with human judgements, intuitive examples, detailed
discussions demonstrate the quality and diversity of the gen-
erated responses with 9.80% increase of acceptable ratio over
the best of six baseline methods.

Introduction
Conversational models, aiming at generating relevant and
fluent responses in free-form natural language, have at-
tracted increasing studies for the dialogue-based interface
with its wide application fields from customer service to user
entertainment (Abu Shawar and Atwell 2007; Grosz 2016).
Previous rule-based (Williams and Young 2007; Misu et al.
2012; Young et al. 2013) and retrieval-based (Ji, Lu, and Li
2014) conversational models requires manual efforts in rule
developing and feature engineering, or can only response the
posts in pre-existing cases, thus are difficult to be extended
to open domains. Recently, the vast amount of dialogue text
generated by social media provides the data basis for gen-
erative models of dialogue systems, which are promising to
outperform the conventional ones (Shang, Lu, and Li 2015).

Generative conversational models, which learn the map-
ping from an input post x to its response y, are typically
motivated by the previous studies in statistic machine trans-
lation (SMT). Instead of translating from one language to
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another, they “translate” an input post x to a response y via
maximizing the probability of p(y|x). However, since the
generic responses such as “I see”, “that’s OK” and “that’s
great” appear quite frequently in the corpus, the training
objective of maximum likelihood tends to produce high-
frequency responses, which might be meaningless and lack
of diversity (Li et al. 2016).

In this study, we find that the training corpus for conver-
sational models is intrinsically different from the one for
translation models in terms of output diversity. In transla-
tion corpus, since every sentence in a language and its trans-
lation in another language are semantically equivalent, there
exists a 1-to-1 relationship between them. However, in con-
versation corpus, an input post might correspond to multi-
ple responses with different semantics and speaking styles.
For example, in free-chat corpus used in this study the input
sentence “how could you be so silly” includes 62 different
responses. It means that a 1-to-n relationship between a post
to its responses actually exists in open-domain conversation.

Furthermore, we argue that this issue of response diver-
sity mainly comes from the different language mechanisms
people use in responding the same utterance. For exam-
ple, considering the input “have you eaten yet?” (a widely-
used sentence in Chinese for greeting), the respondent who
prefers rhetorical questions could response with “how about
you?”. In contrary, the respondent who prefers declarative
sentences could response affirmatively with “yes, I have”.
Hence, even for the same input the responses generated by
different mechanisms may be largely dissimilar in terms of
language style and response content.

To address this issue of response diversity, we explicitly
consider the multiplicity of responding mechanisms in mod-
eling dialogues and propose a probabilistic framework of
Mechanism-Aware Responding Machine (MARM). Specif-
ically, we model the responding mechanisms as latent em-
beddings, and represent the mapping from an post x to its re-
sponse y as a mixture of these responding mechanisms. Dif-
ferent from the conventional neural encoder-decoder (Cho et
al. 2014; Sutskever, Vinyals, and Le 2014) for response gen-
eration (Shang, Lu, and Li 2015; Yin et al. 2016), a frame-
work of encoder-diverter-decoder is developed, where the
module of diverter is used to generate mechanism-aware
context. After the model parameters are learned, the most
likely mechanisms to an input post x are selected to encode

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3400



A Latent Variable 
the frequency of the input post. It means that when an input
post occurs more frequent in the conversation corpus, it is
more likely that it leads to more diverse responses.

We also conduct the similar analysis on the translation
corpus and obtain totally different results (the correspond-
ing figures are omitted due to the space limitation). Though
some sentences occur multiple times in the source language,
the multiple translation sentences to a specific input always
belong to the same topic. Furthermore, we calculate the edit
distances among the translation sentences to a single input
and find that they are different slightly. This result is not sur-
prising since the two parallel sentences in the source and tar-
get language should have the same content semantics. Nev-
ertheless, as to the natural language conversation (especially
for free chat), the responses become quite divergent espe-
cially for the widely-occurred input. Therefore, we need to
explicitly model the multiplicity of response mechanism in
open environment conversation.

Mechanism-Aware Response Machine
Modeling of Response Mechanisms
Given an input sequence x = (x1 , x2 , · · · , xT ) and a re-
sponse sequence y = (y1 , y2 , · · · , yT ′), the generative con-
versation model aims to learn p(y|x) based on the training
corpus D = {(x,y)|y is the response of input x} . The con-
ventional neural encoder-decoder model first summarizes
the post as a vector representation, then feeds this repre-
sentation to a decoder to generate responses. Similar frame-
work has been applied in machine translation with remark-
able success (Cho et al. 2014; Sutskever, Vinyals, and Le
2014). However, the task of machine translation, which es-
timates the probability of a target language sentence condi-
tioned on the source language sentence with the same mean-
ing, is much easier than the task of conversation modeling
with large degree of response diversity (as shown in the pre-
vious section). Thus, the modeling of p(y|x) for natural lan-
guage conversation should be complex enough to represent
all the suitable and diverse responses.

To this end, in this study we assume that there are M
latent mechanisms {mi} Mi=1 for response generation. Then,
p(y|x) can be expanded as follows,

p(y|x) =
M∑

i=1

p(y,mi|x) =
M∑

i=1

p(mi|x)p(y|mi,x) (1)

In Equ. (1), p(mi|x) represents the probability of the
mechanism mi conditioned on x. This probability actually
measures the degree that mi can generate the response for x.
The bigger of this value is, the more degree that the mech-
anism mi can be used to generate the responses for x. Ad-
ditionally, p(y|mi,x) measures the probability that the re-
sponse y is generated by the mechanism mi for x.

Now, the question is how to model p(mi|x) and
p(y|mi,x) in the framework of encoder-diverter-decoder.
As shown in Fig. 2, a module of diverter is developed to
bridge encoder and decoder. The diverter takes the hidden
states of the encoder as input, which forms the summary

Input: x1, x2, …, xT

Decoder

Encoder

Response: y1, y2, …, yT’

Diverter

Mechanism-Aware Context

softm
ax

p(m
i |x), i=1, 2, Ċ

, MMechanism Embeddings
concatenation

Original Context c

mi

c

[c, mi]

Figure 2: Structure of encoder-diverter-decoder model.

context c for the input post x. Then, p(mi|x) can be mod-
eled as follows (shown in the right part of Fig. 2),

p(mi|x) =
exp g(mi, c)∑M

k=1 exp g(mk , c)
(2)

where g can be nonlinear, potentially multi-layered function
and mi represents the embedding of the i-th mechanism.
Here, {mi} Mi=1 are trained as model parameters. Addition-
ally, to avoid overfitting g is defined with the maxout activa-
tion function (Goodfellow et al. 2013):

g(mi, c) = mT
i Wtt

t = [max{̃t2j−1 , t̃2j } ]Tj=1 ,2 ,··· ,lc

t̃ = Wcc

(3)

where t̃j is the j-th element of the vector t̃, Wt ∈ Rlm×lc ,
and Wc ∈ R2 lc×lc . Here, lc and lm denote the dimensions
of c and mi respectively.

Next, to model p(y|mi,x) we must consider how an input
x and a mechanism mi jointly determine the response y.
Since the hidden context c give a representation of the input
x, c can be combined with mi to form a mechanism-aware
context. For model simplicity, the concatenation of [c;mi]
is utilized to form this mechanism-aware context. With this
adapted context as input, the decoder is expected to generate
mechanism-aware response for p(y|mi,x).

It is worth mentioning that the proposed diverter model is
independent of the concrete methods on how the decoder
use the context for response generation. The mechanism-
aware context can be fed to only the first hidden state
unit (Sutskever, Vinyals, and Le 2014) or every hidden state
unit in the decoder (Cho et al. 2014). The recent attention-
based decoder (Bahdanau, Cho, and Bengio 2015) can also
be applied to this mechanism-aware context to generate dif-
ferent context for every hidden state unit in the decoder. In
this paper, the method in (Cho et al. 2014) is adopted. The
details on the decoder is omitted due to the space limitation.

With the modeling of p(mi|x) and p(y|mi,x) the objec-
tive of likelihood maximization, namely

∑

(x,y)∈Dc

log p(y|x)=
∑

(x,y)∈Dc

log
M∑

i=1

p(mi|x)p(y|mi,x)

(4)
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is used to learn the mechanism embeddings {mi} Mi=1 and
other model parameters. Observed from Equ.(4), the compu-
tational complexity is linear to the number of mechanisms.
Thus, it is not difficult to capture complex phenomena in
natural language if large number of mechanisms needed.

Note that calculating the logarithm of the total probability
(required here) may cause overflow or underflow problems,
which can be avoided by the technique of numerical compu-
tation in (LogSumExp 2016).

Mechanism-Aware Response Generation
With all the responding mechanisms {mi} Mi=1 obtained, we
develop the following mechanism-aware method to generate
responses for a new input x. First, with the probabilities of
p(mi|x) we select the L (L < M ) mechanisms with the
maximal values of p(mi|x). These L mechanisms are most
likely to generate the appropriate responses for x. Then, for
each selected mechanism ml, we utilize beam search to gen-
erate K responses candidates by maximizing p(y|ml,x).
Finally, all the L×K generated response candidates are re-
ranked using following score:

p(y,ml|x) = p(ml|x)p(y|ml,x) (5)

where the candidate y is generated by mechanism ml. Only
the top K candidates are returned as the final responses.

The ranking measure in Equ. (5) contains two folds. First,
maximizing p(ml|x) guarantees that the responses gener-
ated by ml are relevant to the input x. Second, maximizing
p(y|ml,x) guarantees that the response y generated by ml

is fluent and grammatical for x. Thus, this mechanism-aware
method is expected to generate the appropriate responses,
which are both relevant and fluent to the input.

Additionally, instead of using p(y|x), we use p(y,ml|x)
to rank the response candidate y generated by ml. With this
new measure, a response y which has a relatively low value
of p(y|x) may be promoted to higher rank if y has higher
probability p(y,ml|x). It means that the grammatical but
infrequent responses, whose values of p(y|x) are relatively
low, may be ranked higher by some mechanism, and then
more likely to be chosen in the final responses.

Furthermore, since the mechanism-aware contexts are dif-
ferent for different mechanisms, the responses vary among
mechanisms. The experiments also show that different
mechanisms has different influences on the wording and
speaking styles in responding. Since the MARM generates
responses from L different mechanisms, these responses
tend to be more diverse. Hence, we argue that the method of
mechanism-aware response generation will produce mean-
ingful and diverse responses, which will be further demon-
strated in the experimental section.

Experiment Process
Dataset Details
To obtain the conversation corpus, we collected nearly 14
million post-response pairs from Tencent Weibo1. Then, we
remove spams and advertisements from dataset, and only

1http://t.qq.com/?lang=en US

retain high-quality post-response tuples. Totally, we have
815, 852 pairs left, among which 775, 852 ones are for train-
ing, and 40, 000 for model validation.

Benchmark Methods
We implemented six conversation models for comparison:

1) RNNs2s (Sutskever, Vinyals, and Le 2014): The one-
layer seq2seq model, which uses the last hidden state of the
encoder as the initial hidden state of the decoder. 2) RN-
Nencdec (Cho et al. 2014): The one-layer encoder-decoder
model, which feeds the last hidden state of encoder to every
cell and softmax unit of the decoder. 3) RNNatt (Bahdanau,
Cho, and Bengio 2015): The model based on the encoder-
decoder framework with attention signal. 4) NRM (Shang,
Lu, and Li 2015): The neural responding machine with
both the global and local scheme for attention modeling.
5) MMMI-bidi and MMI-antiLM (Li et al. 2016): The one-
layer encoder-decoder model using Maximum Mutual Infor-
mation (MMI) as the objective function to reorder generated
responses. It obtains two variants λ = 0.5 and γ = 1.

Note that the benchmarks are the state-of-the-art for di-
alogue generation based on one-round input. They differ
in how the context of the input post from the encoder is
fed to the decoder for response generation. The proposed
mechanism-aware model with the diverter module can be
applied to any of these models, to improve the respond-
ing performance in another vertical direction. In this study
the mechanism-aware model based on RNNencdec is imple-
mented for evaluation. Again, we stress that the mechanism-
aware model can be easily applied to the models (Serban
et al. 2015), where the context is summarized from previ-
ous multiple rounds of dialogues. In the future MARM for
multi-round dialogue systems will be evaluated.

Implementation Details
Note that segmentation granularity and vocabulary size have
an impact on model performances, for fair comparison, we
used the vocabulary of 8,000 words (a mixture of Chinese
words and characters) for all models. This vocabulary covers
99.93% of the words in the corpus. All the other characters
are replaced with a special token “UNK”.

As suggested in (Shang, Lu, and Li 2015), the word em-
beddings for the encoders and decoders are treated respec-
tively. Some initial experiments demonstrated that the two
separate sets of word embeddings can improve the perfor-
mance. For fair comparison, the dimension of the word em-
bedding is set to 128 for all the models. As suggested in (Cho
et al. 2014), the GRU unit is simpler and faster to con-
verge than LSTM. Thus, we applied the one-layer GRU units
(each with 1024 cells) to all the models in experiment. For
MARM, the number of mechanisms is M = 4. As the mech-
anism increases, the language styles of some mechanisms
become similar. While more mechanisms yield better per-
formance in terms of objective function, 4 mechanisms are
suitable to generate responses with distinctive wording clus-
ters and satisfactory quality in experiments. The mechanism
embeddings with 128 dimensions are initialized by a uni-
form distribution between -0.2 and 0.2. For response gen-
eration, we select top L = 2 mechanisms for beam search,
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Resultspus with response diversity. Thus, the models with attention
technique may overfit the training data but achieve poor per-
formance on the test data in the experiments.

Analysis on Responding Mechanisms
In order to intuitively understand what the learned respond-
ing mechanisms are and how they influence the process
of response generation, we identified the keywords in the
responses generated by different responding mechanisms.
With each mechanism mi we used it to generate 5 responses
for each of the 300 posts in the test set. We put all the
1,500 responses from a mechanism mi together to form a
pseudo document Di. Then, we calculated the following
measure with the j-th word and the i-th mechanism, namely
p(wordj |mi) =

nj
i∑M

k=1 nj
k

, where nj
i is the number of times

that the j-th word occurs in Di. Clearly, the bigger of this
value, the more likely that the mechanism mi utilizes it for
response generation. Finally, for each mechanism we listed
the top-10 keywords ranked by this measure, as shown in
Table 2. Note that in this table we only considered the key-
words which occur enough times in Di, namely nj

i > 100.

Table 2: Keywords from different responding mechanisms

Table 2 shows the keywords for each responding mech-
anisms. For m1, conjunction words, such as that, still and
at once, occupy a large proportion. For m2, modifier words,
such as nice, little and tiny, occupy a large proportion. For
m3, the words about questions, such as where, why, how and
the question mark, occur frequently. Thus, this mechanism is
more likely to generate interrogative or rhetorical sentences.
For m4, most of the keywords, such as cannot, always and
must, have the affirmative or negative tones. Thus, it may
generate the responses in the form of emphatic sentences.
These observations indicate that the obtained mechanisms
have certain influence on the wording and speaking styles in
responding. Hence, for the same input, we can utilize differ-
ent mechanisms to increase the diversity of responses.

Additionally, some examples in Table 3 empirically
shows how the different mechanisms generate relevent, flu-
ent and diverse responses. These examples are consistent
with the analysis in Table 2.

Related Work
The related works of conversation models are five-folds.

Statistic Machine Translation. The basic neural-based
encoder-decoder framework for generative conversation

Table 3: The responses from MARM for input examples

models is actually from the studies of statistic machine trans-
lation. Sutskever et al. (2014) used a multilayered LSTM
as the encoder and another deep LSTM as the decoder for
machine translation. Later, Cho et al. (2014) proposed the
RNN encoder-decoder framework, where the generated con-
text from the input is fed to every unit in the decoder. Bah-
dana et al. (2015) extended the encoder-decoder framework
with the attention technique to improve the performance of
SMT for long input sentences. However, all these SMT stud-
ies do not consider the issue of response diversity.

Conversation Models. Along the way of neural SMT,
many recent studies showed that these models can also
be successfully used in conversation modeling, another
sequence-to-sequence learning problem. Specifically, Shang
et al. (2015) further extended the attention technique with
both global and local schemes for generating short conversa-
tion. Their study qualitatively analyzed the issue of response
diversity, but lacked the quantitative study on it. Most re-
cently, researchers begun to investigate models for multiple-
round conversation. Serban et al. (2015) built an end-to-end
dialogue system using generative hierarchical neural net-
work. A related model proposed by Sordoni et al. (2015)
applied a hierarchical recurrent encoder-decoder model for
query suggestion. The basic idea for multiple-round conver-
sation is to extend the context generation from the immedi-
ate previous sentence to several previous ones.

Response Diversity. Some recent studies began to tackle
the issue of response diversity from both SMT and conver-
sation sides. Gimpel et al. (2013) proposed the methods,
namely system combination and discriminating re-ranking,
to produce a diverse set of plausible translations. For conver-
sation modeling, Li et al. (2016) argued that the traditional
objective function is unsuited, and used Maximum Mutual
Information (MMI) as the objective. They also mentioned
that the MMI measure penalizes not only high-frequency re-
sponses but also fluent ones, and may lead to ungrammatical
outputs. Thus, they reduced the MMI measure to a simple
version. Our work addresses the response diversity issue by
directly modeling the different responding mechanisms. The
proposed mechanism-aware ranking method helps to pro-
mote the infrequent but meaningful responses.

Discourse Relation. Some recent studies focus on auto-
matically recognizing the internal structure and logical re-
lationship between adjacent sentences. Ji et al. (2016) pro-
posed a RNN-based model for jointly modeling sequences
of words and discourse relations. However, this work explic-
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Abstract

The encoder-decoder dialog model is one
of the most prominent methods used
to build dialog systems in complex do-
mains. Yet it is limited because it can-
not output interpretable actions as in tra-
ditional systems, which hinders humans
from understanding its generation process.
We present an unsupervised discrete sen-
tence representation learning method that
can integrate with any existing encoder-
decoder dialog models for interpretable re-
sponse generation. Building upon vari-
ational autoencoders (VAEs), we present
two novel models, DI-VAE and DI-VST
that improve VAEs and can discover inter-
pretable semantics via either auto encod-
ing or context predicting. Our methods
have been validated on real-world dialog
datasets to discover semantic representa-
tions and enhance encoder-decoder mod-
els with interpretable generation.1

1 Introduction

Classic dialog systems rely on developing a mean-
ing representation to represent the utterances from
both the machine and human users (Larsson and
Traum, 2000; Bohus et al., 2007). The dialog
manager of a conventional dialog system outputs
the system’s next action in a semantic frame that
usually contains hand-crafted dialog acts and slot
values (Williams and Young, 2007). Then a natu-
ral language generation module is used to gener-
ate the system’s output in natural language based
on the given semantic frame. This approach suf-
fers from generalization to more complex do-
mains because it soon become intractable to man-

1Data and code are available at https://github.
com/snakeztc/NeuralDialog-LAED.

ually design a frame representation that covers
all of the fine-grained system actions. The re-
cently developed neural dialog system is one of
the most prominent frameworks for developing di-
alog agents in complex domains. The basic model
is based on encoder-decoder networks (Cho et al.,
2014) and can learn to generate system responses
without the need for hand-crafted meaning repre-
sentations and other annotations.

Figure 1: Our proposed models learn a set of dis-
crete variables to represent sentences by either au-
toencoding or context prediction.

Although generative dialog models have ad-
vanced rapidly (Serban et al., 2016; Li et al.,
2016; Zhao et al., 2017), they cannot provide inter-
pretable system actions as in the conventional dia-
log systems. This inability limits the effectiveness
of generative dialog models in several ways. First,
having interpretable system actions enables hu-
man to understand the behavior of a dialog system
and better interpret the system intentions. Also,
modeling the high-level decision-making policy
in dialogs enables useful generalization and data-
efficient domain adaptation (Gašić et al., 2010).
Therefore, the motivation of this paper is to de-
velop an unsupervised neural recognition model
that can discover interpretable meaning represen-
tations of utterances (denoted as latent actions) as
a set of discrete latent variables from a large un-
labelled corpus as shown in Figure 1. The dis-
covered meaning representations will then be inte-
grated with encoder decoder networks to achieve
interpretable dialog generation while preserving
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hood lowerbound and the mutual information be-
tween z and the input data:

LVAE + I(Z,X) =

EqR(z|x)p(x)[log pG(x|z)]� KL(q(z)kp(z))
(4)

Therefore, jointly optimizing ELBO and mutual
information simply cancels out the information-
discouraging term. Also, we can still sample from
the prior distribution for generation because of
KL(q(z)kp(z)). Eq. 4 is similar to the objec-
tives used in adversarial autoencoders (Makhzani
et al., 2015; Kim et al., 2017). Our derivation pro-
vides a theoretical justification to their superior
performance. Notably, Eq. 4 arrives at the same
loss function proposed in infoVAE (Zhao S et al.,
2017). However, our derivation is different, offer-
ing a new way to understand ELBO behavior.

The remaining challenge is how to minimize
KL(q(z)kp(z)), since q(z) is an expectation over
q(z|x). When z is continuous, prior work has
used adversarial training (Makhzani et al., 2015;
Kim et al., 2017) or Maximum Mean Discrepancy
(MMD) (Zhao S et al., 2017) to regularize q(z). It
turns out that minimizing KL(q(z)kp(z)) for dis-
crete z is much simpler than its continuous coun-
terparts. Let xn be a sample from a batch of N
data points. Then we have:

q(z) ⇡ 1

N

NX

n=1

q(z|xn) = q
0(z) (5)

where q
0(z) is a mixture of softmax from the pos-

teriors q(z|xn) of each xn. We can approximate
KL(q(z)kp(z)) by:

KL(q0(z)kp(z)) =
KX

k=1

q
0(z = k) log

q
0(z = k)

p(z = k)

(6)

We refer to Eq. 6 as Batch Prior Regularization
(BPR). When N approaches infinity, q

0(z) ap-
proaches the true marginal distribution of q(z).
In practice, we only need to use the data from
each mini-batch assuming that the mini batches
are randomized. Last, BPR is fundamentally dif-
ferent from multiplying a coefficient < 1 to an-
neal the KL term in VAE (Bowman et al., 2015).
This is because BPR is a non-linear operation
log sum exp. For later discussion, we denote our
discrete infoVAE with BPR as DI-VAE.

3.2 Learning Sentence Representations from

the Context

DI-VAE infers sentence representations by recon-
struction of the input sentence. Past research in
distributional semantics has suggested the mean-
ing of language can be inferred from the adjacent
context (Harris, 1954; Hill et al., 2016). The dis-
tributional hypothesis is especially applicable to
dialog since the utterance meaning is highly con-
textual. For example, the dialog act is a well-
known utterance feature and depends on dialog
state (Austin, 1975; Stolcke et al., 2000). Thus,
we introduce a second type of latent action based
on sentence-level distributional semantics.

Skip thought (ST) is a powerful sentence
representation that captures contextual informa-
tion (Kiros et al., 2015). ST uses an RNN to en-
code a sentence, and then uses the resulting sen-
tence representation to predict the previous and
next sentences. Inspired by ST’s robust perfor-
mance across multiple tasks (Hill et al., 2016), we
adapt our DI-VAE to Discrete Information Varia-
tional Skip Thought (DI-VST) to learn discrete la-
tent actions that model distributional semantics of
sentences. We use the same recognition network
from DI-VAE to output z’s posterior distribution
qR(z|x). Given the samples from qR(z|x), two
RNN generators are used to predict the previous
sentence xp and the next sentences xn. Finally,
the learning objective is to maximize:

LDI-VST = EqR(z|x)p(x))[log(p
n
G(xn|z)ppG(xp|z))]

� KL(q(z)kp(z))
(7)

3.3 Integration with Encoder Decoders

We now describe how to integrate a given qR(z|x)
with an encoder decoder and a policy network. Let
the dialog context c be a sequence of utterances.
Then a dialog context encoder network can en-
code the dialog context into a distributed represen-
tation h

e = Fe(c). The decoder Fd can generate
the responses x̃ = Fd(he, z) using samples from
qR(z|x). Meanwhile, we train ⇡ to predict the
aggregated posterior Ep(x|c)[qR(z|x)] from c via
maximum likelihood training. This model is re-
ferred as Latent Action Encoder Decoder (LAED)
with the following objective.

LLAED(✓F , ✓⇡) =

EqR(z|x)p(x,c)[logp⇡(z|c) + log pF(x|z, c)]
(8)

Also simply augmenting the inputs of the decoders
with latent action does not guarantee that the gen-
erated response exhibits the attributes of the give
action. Thus we use the controllable text gener-
ation framework (Hu et al., 2017) by introducing
LAttr, which reuses the same recognition network
qR(z|x) as a fixed discriminator to penalize the de-
coder if its generated responses do not reflect the
attributes in z.

LAttr(✓F) = EqR(z|x)p(c,x)[log qR(z|F(c, z))]
(9)

Since it is not possible to propagate gradients
through the discrete outputs at Fd at each word
step, we use a deterministic continuous relax-
ation (Hu et al., 2017) by replacing output of Fd

with the probability of each word. Let ot be
the normalized probability at step t 2 [1, |x|],
the inputs to qR at time t are then the sum of
word embeddings weighted by ot, i.e. h

R
t =

RNN(hRt�1,Eot) and E is the word embedding
matrix. Finally this loss is combined with LLAED
and a hyperparameter � to have Attribute Forcing
LAED.

LattrLAED = LLAED + �LAttr (10)

3.4 Relationship with Conditional VAEs

It is not hard to see LLAED is closely related to the
objective of CVAEs for dialog generation (Serban
et al., 2016; Zhao et al., 2017), which is:

LCVAE = Eq[log p(x|z, c)]�KL(q(z|x, c)kp(z|c))
(11)

Despite their similarities, we highlight the key dif-
ferences that prohibit CVAE from achieving inter-
pretable dialog generation. First LCVAE encour-
ages I(x, z|c) (Agakov, 2005), which learns z that
capture context-dependent semantics. More in-
tuitively, z in CVAE is trained to generate x via
p(x|z, c) so the meaning of learned z can only be
interpreted along with its context c. Therefore this
violates our goal of learning context-independent
semantics. Our methods learn qR(z|x) that only
depends on x and trains qR separately to ensure
the semantics of z are interpretable standalone.

4 Experiments and Results

The proposed methods are evaluated on four
datasets. The first corpus is Penn Treebank
(PTB) (Marcus et al., 1993) used to evaluate sen-
tence VAEs (Bowman et al., 2015). We used

the version pre-processed by Mikolov (Mikolov
et al., 2010). The second dataset is the Stanford
Multi-Domain Dialog (SMD) dataset that contains
3,031 human-Woz, task-oriented dialogs collected
from 3 different domains (navigation, weather and
scheduling) (Eric and Manning, 2017). The other
two datasets are chat-oriented data: Daily Dialog
(DD) and Switchboard (SW) (Godfrey and Hol-
liman, 1997), which are used to test whether our
methods can generalize beyond task-oriented di-
alogs but also to to open-domain chatting. DD
contains 13,118 multi-turn human-human dialogs
annotated with dialog acts and emotions. (Li et al.,
2017). SW has 2,400 human-human telephone
conversations that are annotated with topics and
dialog acts. SW is a more challenging dataset be-
cause it is transcribed from speech which contains
complex spoken language phenomenon, e.g. hesi-
tation, self-repair etc.

4.1 Comparing Discrete Sentence

Representation Models

The first experiment used PTB and DD to eval-
uate the performance of the proposed methods
in learning discrete sentence representations. We
implemented DI-VAE and DI-VST using GRU-
RNN (Chung et al., 2014) and trained them using
Adam (Kingma and Ba, 2014). Besides the pro-
posed methods, the following baselines are com-
pared. Unregularized models: removing the
KL(q|p) term from DI-VAE and DI-VST leads
to a simple discrete autoencoder (DAE) and dis-
crete skip thought (DST) with stochastic discrete
hidden units. ELBO models: the basic discrete
sentence VAE (DVAE) or variational skip thought
(DVST) that optimizes ELBO with regularization
term KL(q(z|x)kp(z)). We found that standard
training failed to learn informative latent actions
for either DVAE or DVST because of the poste-
rior collapse. Therefore, KL-annealing (Bowman
et al., 2015) and bag-of-word loss (Zhao et al.,
2017) are used to force these two models learn
meaningful representations. We also include the
results for VAE with continuous latent variables
reported on the same PTB (Zhao et al., 2017). Ad-
ditionally, we report the perplexity from a stan-
dard GRU-RNN language model (Zaremba et al.,
2014).

The evaluation metrics include reconstruction
perplexity (PPL), KL(q(z)kp(z)) and the mutual
information between input data and latent vari-
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(e.g. dialog acts), it is unfair to use classic clus-
ter measures (Vinh et al., 2010) to evaluate the
clusters from latent actions. This is because the
uniform prior p(z) evenly distribute the data to all
possible latent actions, so that it is expected that
frequent classes will be assigned to several latent
actions. Thus we utilize the homogeneity met-
ric (Rosenberg and Hirschberg, 2007) that mea-
sures if each latent action contains only members
of a single class. We tested this on the SW and DD,
which contain human annotated features and we
report the latent actions’ homogeneity w.r.t these
features in Table 3. On DD, results show DI-VST

SW DD

Act Topic Act Emotion
DI-VAE 0.48 0.08 0.18 0.09
DI-VST 0.33 0.13 0.34 0.12

Table 3: Homogeneity results (bounded [0, 1]).

works better than DI-VAE in terms of creating ac-
tions that are more coherent for emotion and dia-
log acts. The results are interesting on SW since
DI-VST performs worse on dialog acts than DI-
VAE. One reason is that the dialog acts in SW are
more fine-grained (42 acts) than the ones in DD
(5 acts) so that distinguishing utterances based on
words in x is more important than the information
in the neighbouring utterances.

We then apply the proposed methods to SMD
which has no manual annotation and contains task-
oriented dialogs. Two experts are shown 5 ran-
domly selected utterances from each latent action
and are asked to give an action name that can de-
scribe as many of the utterances as possible. Then
an Amazon Mechanical Turk study is conducted
to evaluate whether other utterances from the same
latent action match these titles. 5 workers see the
action name and a different group of 5 utterances
from that latent action. They are asked to select all
utterances that belong to the given actions, which
tests the homogeneity of the utterances falling in
the same cluster. Negative samples are included to
prevent random selection. Table 4 shows that both
methods work well and DI-VST achieved better
homogeneity than DI-VAE.

Since DI-VAE is trained to reconstruct its input
and DI-VST is trained to model the context, they
group utterances in different ways. For example,
DI-VST would group “Can I get a restaurant”, “I
am looking for a restaurant” into one action where

Model Exp Agree Worker  Match Rate
DI-VAE 85.6% 0.52 71.3%
DI-VST 93.3% 0.48 74.9%

Table 4: Human evaluation results on judging the
homogeneity of latent actions in SMD.

DI-VAE may denote two actions for them. Finally,
Table 4.2 shows sample annotation results, which
show cases of the different types of latent actions
discovered by our models.

Model Action Sample utterance

DI-VAE scheduling - sys: okay, scheduling a yoga
activity with Tom for the 8th at
2pm.
- sys: okay, scheduling a meet-
ing for 6 pm on Tuesday with
your boss to go over the quar-
terly report.

requests - usr: find out if it ’s supposed
to rain
- usr: find nearest coffee shop

DI-VST ask sched-
ule info

- usr: when is my football ac-
tivity and who is going with
me?
- usr: tell me when my dentist
appointment is?

requests - usr: how about other coffee?
- usr: 11 am please

Table 5: Example latent actions discovered in
SMD using our methods.

4.3 Dialog Response Generation with Latent

Actions

Finally we implement an LAED as follows. The
encoder is a hierarchical recurrent encoder (Ser-
ban et al., 2016) with bi-directional GRU-RNNs
as the utterance encoder and a second GRU-RNN
as the discourse encoder. The discourse encoder
output its last hidden state h

e
|x|. The decoder is

another GRU-RNN and its initial state of the de-
coder is obtained by h

d
0 = h

e
|x| +

PM
m=1 em(zm),

where z comes from the recognition network of
the proposed methods. The policy network ⇡ is a
2-layer multi-layer perceptron (MLP) that models
p⇡(z|he|x|). We use up to the previous 10 utter-
ances as the dialog context and denote the LAED
using DI-VAE latent actions as AE-ED and the one
uses DI-VST as ST-ED.

First we need to confirm whether an LAED
can generate responses that are consistent with
the semantics of a given z. To answer this, we
use a pre-trained recognition network R to check
if a generated response carries the attributes in
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Abstract

While neural, encoder-decoder models have
had significant empirical success in text gener-
ation, there remain several unaddressed prob-
lems with this style of generation. Encoder-
decoder models are largely (a) uninterpretable,
and (b) difficult to control in terms of their
phrasing or content. This work proposes a
neural generation system using a hidden semi-
markov model (HSMM) decoder, which learns
latent, discrete templates jointly with learning
to generate. We show that this model learns
useful templates, and that these templates
make generation both more interpretable and
controllable. Furthermore, we show that this
approach scales to real data sets and achieves
strong performance nearing that of encoder-
decoder text generation models.

1 Introduction

With the continued success of encoder-decoder
models for machine translation and related tasks,
there has been great interest in extending these
methods to build general-purpose, data-driven nat-
ural language generation (NLG) systems (Mei
et al., 2016; Dušek and Jurcıcek, 2016; Lebret
et al., 2016; Chisholm et al., 2017; Wiseman et al.,
2017). These encoder-decoder models (Sutskever
et al., 2014; Cho et al., 2014; Bahdanau et al.,
2015) use a neural encoder model to represent a
source knowledge base, and a decoder model to
emit a textual description word-by-word, condi-
tioned on the source encoding. This style of gen-
eration contrasts with the more traditional division
of labor in NLG, which famously emphasizes ad-
dressing the two questions of “what to say” and
“how to say it” separately, and which leads to sys-
tems with explicit content selection, macro- and
micro-planning, and surface realization compo-
nents (Reiter and Dale, 1997; Jurafsky and Martin,
2014).

Source Entity: Cotto
type[coffee shop], rating[3 out of 5],
food[English], area[city centre],
price[moderate], near[The Portland Arms]

System Generation:
Cotto is a coffee shop serving English food
in the moderate price range. It is located
near The Portland Arms. Its customer rating is
3 out of 5.

Neural Template:

| The

...
|

is a
is an

is an expensive
...

| |
providing
serving
offering

...

|

|
food

cuisine
foods
...

|
in the
with a

and has a
...

| |
price range

price bracket
pricing
...

| . |
It’s
It is

The place is
...

|
located in the
located near

near
...

| | . |
Its customer rating is

Their customer rating is
Customers have rated it

...

| | .

Figure 1: An example template-like generation from the E2E
Generation dataset (Novikova et al., 2017). Knowledge base
x (top) contains 6 records, and ŷ (middle) is a system gen-
eration; records are shown as type[value]. An induced
neural template (bottom) is learned by the system and em-
ployed in generating ŷ. Each cell represents a segment in
the learned segmentation, and “blanks” show where slots are
filled through copy attention during generation.

Encoder-decoder generation systems appear to
have increased the fluency of NLG outputs, while
reducing the manual effort required. However,
due to the black-box nature of generic encoder-
decoder models, these systems have also largely
sacrificed two important desiderata that are often
found in more traditional systems, namely (a) in-
terpretable outputs that (b) can be easily controlled
in terms of form and content.

This work considers building interpretable and
controllable neural generation systems, and pro-
poses a specific first step: a new data-driven gen-
eration model for learning discrete, template-like
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due to the black-box nature of generic encoder-
decoder models, these systems have also largely
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a Sequence of Latent Variables
ally use two per-timestep variables to model multi-
step segments: a length variable lt 2 {1, . . . , L}
specifying the length of the current segment, and a
deterministic binary variable ft indicating whether
a segment finishes at time t. We will consider in
particular conditional HSMMs, which condition
on a source x, essentially giving us an HSMM de-
coder.

An HSMM specifies a joint distribution on the
observations and latent segmentations. Letting ✓
denote all the parameters of the model, and using
the variables introduced above, we can write the
corresponding joint-likelihood as follows

p(y, z, l, f |x; ✓) =
T�1Y

t=0

p(zt+1, lt+1 | zt, lt, x)ft

⇥
TY

t=1

p(yt�lt+1:t | zt, lt, x)ft ,

where we take z0 to be a distinguished start-
state, and the deterministic ft variables are used
for excluding non-segment log probabilities. We
further assume p(zt+1, lt+1 | zt, lt, x) factors as
p(zt+1 | zt, x) ⇥ p(lt+1 | zt+1). Thus, the likeli-
hood is given by the product of the probabilities
of each discrete state transition made, the proba-
bility of the length of each segment given its dis-
crete state, and the probability of the observations
in each segment, given its state and length.

5 A Neural HSMM Decoder

We use a novel, neural parameterization of an
HSMM to specify the probabilities in the likeli-
hood above. This full model, sketched out in Fig-
ure 3, allows us to incorporate the modeling com-
ponents, such as LSTMs and attention, that make
neural text generation effective, while maintaining
the HSMM structure.

5.1 Parameterization

Since our model must condition on x, let rj 2Rd

represent a real embedding of record rj 2x, and
let xa 2Rd represent a real embedding of the en-
tire knowledge base x, obtained by max-pooling
coordinate-wise over all the rj . It is also useful
to have a representation of just the unique types
of records that appear in x, and so we also define
xu 2Rd to be the sum of the embeddings of the
unique types appearing in x, plus a bias vector and
followed by a ReLU nonlinearity.

x

z1

RNN

y1 y2 y3 y4

RNN

z4T

Figure 3: HSMM factor graph (under a known segmenta-
tion) to illustrate parameters. Here we assume z1 is in the
“red” state (out of K possibilities), and transitions to the
“blue” state after emitting three words. The transition model,
shown as T , is a function of the two states and the neural en-
coded source x. The emission model is a function of a “red”
RNN model (with copy attention over x) that generates words
1, 2 and 3. After transitioning, the next word y4 is generated
by the “blue” RNN, but independently of the previous words.

Transition Distribution The transition distribu-
tion p(zt+1 | zt, x) may be viewed as a K ⇥K ma-
trix of probabilities, where each row sums to 1. We
define this matrix to be

p(zt+1 | zt, x) / AB +C(xu)D(xu),

where A2RK⇥m1 , B 2Rm1⇥K are state embed-
dings, and where C : Rd ! RK⇥m2 and D :
Rd ! Rm2⇥K are parameterized non-linear func-
tions of xu. We apply a row-wise softmax to the
resulting matrix to obtain the desired probabilities.

Length Distribution We simply fix all length
probabilities p(lt+1 | zt+1) to be uniform up to a
maximum length L.1

Emission Distribution The emission model
models the generation of a text segment condi-
tioned on a latent state and source information,
and so requires a richer parameterization. Inspired
by the models used for neural NLG, we base this
model on an RNN decoder, and write a segment’s
probability as a product over token-level probabil-
ities,

p(yt�lt+1:t | zt= k, lt= l, x) =

ltY

i=1

p(yt�lt+i | yt�lt+1:t�lt+i�1, zt= k, x)

⇥ p(</seg> | yt�lt+1:t, zt= k, x)⇥ 1{lt = l},

1We experimented with parameterizing the length distri-
bution, but found that it led to inferior performance. Forcing
the length probabilities to be uniform encourages the model
to cluster together functionally similar emissions of differ-
ent lengths, while parameterizing them can lead to states that
specialize to specific emission lengths.
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the HSMM structure.

5.1 Parameterization

Since our model must condition on x, let rj 2Rd

represent a real embedding of record rj 2x, and
let xa 2Rd represent a real embedding of the en-
tire knowledge base x, obtained by max-pooling
coordinate-wise over all the rj . It is also useful
to have a representation of just the unique types
of records that appear in x, and so we also define
xu 2Rd to be the sum of the embeddings of the
unique types appearing in x, plus a bias vector and
followed by a ReLU nonlinearity.
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Figure 3: HSMM factor graph (under a known segmenta-
tion) to illustrate parameters. Here we assume z1 is in the
“red” state (out of K possibilities), and transitions to the
“blue” state after emitting three words. The transition model,
shown as T , is a function of the two states and the neural en-
coded source x. The emission model is a function of a “red”
RNN model (with copy attention over x) that generates words
1, 2 and 3. After transitioning, the next word y4 is generated
by the “blue” RNN, but independently of the previous words.

Transition Distribution The transition distribu-
tion p(zt+1 | zt, x) may be viewed as a K ⇥K ma-
trix of probabilities, where each row sums to 1. We
define this matrix to be

p(zt+1 | zt, x) / AB +C(xu)D(xu),

where A2RK⇥m1 , B 2Rm1⇥K are state embed-
dings, and where C : Rd ! RK⇥m2 and D :
Rd ! Rm2⇥K are parameterized non-linear func-
tions of xu. We apply a row-wise softmax to the
resulting matrix to obtain the desired probabilities.

Length Distribution We simply fix all length
probabilities p(lt+1 | zt+1) to be uniform up to a
maximum length L.1

Emission Distribution The emission model
models the generation of a text segment condi-
tioned on a latent state and source information,
and so requires a richer parameterization. Inspired
by the models used for neural NLG, we base this
model on an RNN decoder, and write a segment’s
probability as a product over token-level probabil-
ities,

p(yt�lt+1:t | zt= k, lt= l, x) =

ltY

i=1

p(yt�lt+i | yt�lt+1:t�lt+i�1, zt= k, x)

⇥ p(</seg> | yt�lt+1:t, zt= k, x)⇥ 1{lt = l},

1We experimented with parameterizing the length distri-
bution, but found that it led to inferior performance. Forcing
the length probabilities to be uniform encourages the model
to cluster together functionally similar emissions of differ-
ent lengths, while parameterizing them can lead to states that
specialize to specific emission lengths.
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coded source x. The emission model is a function of a “red”
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by the “blue” RNN, but independently of the previous words.

Transition Distribution The transition distribu-
tion p(zt+1 | zt, x) may be viewed as a K ⇥K ma-
trix of probabilities, where each row sums to 1. We
define this matrix to be

p(zt+1 | zt, x) / AB +C(xu)D(xu),

where A2RK⇥m1 , B 2Rm1⇥K are state embed-
dings, and where C : Rd ! RK⇥m2 and D :
Rd ! Rm2⇥K are parameterized non-linear func-
tions of xu. We apply a row-wise softmax to the
resulting matrix to obtain the desired probabilities.

Length Distribution We simply fix all length
probabilities p(lt+1 | zt+1) to be uniform up to a
maximum length L.1

Emission Distribution The emission model
models the generation of a text segment condi-
tioned on a latent state and source information,
and so requires a richer parameterization. Inspired
by the models used for neural NLG, we base this
model on an RNN decoder, and write a segment’s
probability as a product over token-level probabil-
ities,

p(yt�lt+1:t | zt= k, lt= l, x) =

ltY

i=1

p(yt�lt+i | yt�lt+1:t�lt+i�1, zt= k, x)

⇥ p(</seg> | yt�lt+1:t, zt= k, x)⇥ 1{lt = l},

1We experimented with parameterizing the length distri-
bution, but found that it led to inferior performance. Forcing
the length probabilities to be uniform encourages the model
to cluster together functionally similar emissions of differ-
ent lengths, while parameterizing them can lead to states that
specialize to specific emission lengths.



Model Details  
(Emission)

ally use two per-timestep variables to model multi-
step segments: a length variable lt 2 {1, . . . , L}
specifying the length of the current segment, and a
deterministic binary variable ft indicating whether
a segment finishes at time t. We will consider in
particular conditional HSMMs, which condition
on a source x, essentially giving us an HSMM de-
coder.

An HSMM specifies a joint distribution on the
observations and latent segmentations. Letting ✓
denote all the parameters of the model, and using
the variables introduced above, we can write the
corresponding joint-likelihood as follows

p(y, z, l, f |x; ✓) =
T�1Y

t=0

p(zt+1, lt+1 | zt, lt, x)ft

⇥
TY

t=1

p(yt�lt+1:t | zt, lt, x)ft ,

where we take z0 to be a distinguished start-
state, and the deterministic ft variables are used
for excluding non-segment log probabilities. We
further assume p(zt+1, lt+1 | zt, lt, x) factors as
p(zt+1 | zt, x) ⇥ p(lt+1 | zt+1). Thus, the likeli-
hood is given by the product of the probabilities
of each discrete state transition made, the proba-
bility of the length of each segment given its dis-
crete state, and the probability of the observations
in each segment, given its state and length.

5 A Neural HSMM Decoder

We use a novel, neural parameterization of an
HSMM to specify the probabilities in the likeli-
hood above. This full model, sketched out in Fig-
ure 3, allows us to incorporate the modeling com-
ponents, such as LSTMs and attention, that make
neural text generation effective, while maintaining
the HSMM structure.

5.1 Parameterization

Since our model must condition on x, let rj 2Rd

represent a real embedding of record rj 2x, and
let xa 2Rd represent a real embedding of the en-
tire knowledge base x, obtained by max-pooling
coordinate-wise over all the rj . It is also useful
to have a representation of just the unique types
of records that appear in x, and so we also define
xu 2Rd to be the sum of the embeddings of the
unique types appearing in x, plus a bias vector and
followed by a ReLU nonlinearity.

x

z1

RNN

y1 y2 y3 y4

RNN

z4T

Figure 3: HSMM factor graph (under a known segmenta-
tion) to illustrate parameters. Here we assume z1 is in the
“red” state (out of K possibilities), and transitions to the
“blue” state after emitting three words. The transition model,
shown as T , is a function of the two states and the neural en-
coded source x. The emission model is a function of a “red”
RNN model (with copy attention over x) that generates words
1, 2 and 3. After transitioning, the next word y4 is generated
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probabilities p(lt+1 | zt+1) to be uniform up to a
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Emission Distribution The emission model
models the generation of a text segment condi-
tioned on a latent state and source information,
and so requires a richer parameterization. Inspired
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probability as a product over token-level probabil-
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where </seg> is an end of segment token. The
RNN decoder uses attention and copy-attention
over the embedded records rj , and is conditioned
on zt= k by concatenating an embedding corre-
sponding to the k’th latent state to the RNN’s in-
put; the RNN is also conditioned on the entire x
by initializing its hidden state with xa.

More concretely, let hk
i�1 2Rd be the state of

an RNN conditioned on x and zt= k (as above)
run over the sequence yt�lt+1:t�lt+i�1. We let the
model attend over records rj using hk

i�1 (in the
style of Luong et al. (2015)), producing a context
vector cki�1. We may then obtain scores vi�1 for
each word in the output vocabulary,

vi�1=W tanh(gk
1 � [hk

i�1, c
k
i�1]),

with parameters gk
1 2R2d and W 2RV⇥2d. Note

that there is a gk
1 vector for each of K discrete

states. To additionally implement a kind of slot
filling, we allow emissions to be directly copied
from the value portion of the records rj using copy
attention (Gülçehre et al., 2016; Gu et al., 2016;
Yang et al., 2016). Define copy scores,

⇢j = rTj tanh(gk
2 � hk

i�1),

where gk
2 2Rd. We then normalize the output-

vocabulary and copy scores together, to arrive at

evi�1=softmax([vi�1, ⇢1, . . . , ⇢J ]),

and thus

p(yt�lt+i=w | yt�lt+1:t�lt+i�1, zt= k, x) =

evi�1,w +
X

j:rj .m=w

evi�1,V+j .

An Autoregressive Variant The model as spec-
ified assumes segments are independent condi-
tioned on the associated latent state and x. While
this assumption still allows for reasonable perfor-
mance, we can tractably allow interdependence
between tokens (but not segments) by having each
next-token distribution depend on all the previ-
ously generated tokens, giving us an autoregres-
sive HSMM. For this model, we will in fact use
p(yt�lt+i=w | y1:t�lt+i�1, zt= k, x) in defining
our emission model, which is easily implemented
by using an additional RNN run over all the pre-
ceding tokens. We will report scores for both
non-autoregressive and autoregressive HSMM de-
coders below.

5.2 Learning
The model requires fitting a large set of neu-
ral network parameters. Since we assume z, l,
and f are unobserved, we marginalize over these
variables to maximize the log marginal-likelihood
of the observed tokens y given x. The HSMM
marginal-likelihood calculation can be carried out
efficiently with a dynamic program analogous to
either the forward- or backward-algorithm famil-
iar from HMMs (Rabiner, 1989).

It is actually more convenient to use the
backward-algorithm formulation when using
RNNs to parameterize the emission distributions,
and we briefly review the backward recurrences
here, again following Murphy (2002). We have:

�t(j) = p(yt+1:T | zt= j, ft=1, x)

=
KX

k=1

�⇤
t (k) p(zt+1= k | zt = j)

�⇤
t (k) = p(yt+1:T | zt+1 = k, ft = 1, x)

=
LX

l=1

h
�t+l(k) p(lt+1= l | zt+1= k)

p(yt+1:t+l | zt+1= k, lt+1= l)
i
,

with base case �T (j)= 1. We can now
obtain the marginal probability of y as
p(y |x)=

PK
k=1 �

⇤
0(k) p(z1= k), where we

have used the fact that f0 must be 1, and we
therefore train to maximize the log-marginal
likelihood of the observed y:

ln p(y |x; ✓) = ln
KX

k=1

�⇤
0(k) p(z1= k). (1)

Since the quantities in (1) are obtained from a
dynamic program, which is itself differentiable,
we may simply maximize with respect to the pa-
rameters ✓ by back-propagating through the dy-
namic program; this is easily accomplished with
automatic differentiation packages, and we use
pytorch (Paszke et al., 2017) in all experiments.

5.3 Extracting Templates and Generating
After training, we could simply condition on a new
database and generate with beam search, as is stan-
dard with encoder-decoder models. However, the
structured approach we have developed allows us
to generate in a more template-like way, giving us
more interpretable and controllable generations.
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Results
BLEU NIST ROUGE CIDEr METEOR

Validation

D&J 69.25 8.48 72.57 2.40 47.03
SUB 43.71 6.72 55.35 1.41 37.87
NTemp 64.53 7.66 68.60 1.82 42.46
NTemp+AR 67.07 7.98 69.50 2.29 43.07

Test

D&J 65.93 8.59 68.50 2.23 44.83
SUB 43.78 6.88 54.64 1.39 37.35
NTemp 55.17 7.14 65.70 1.70 41.91
NTemp+AR 59.80 7.56 65.01 1.95 38.75

Table 1: Comparison of the system of Dušek and Jurcıcek
(2016), which forms the baseline for the E2E challenge, a
non-parametric, substitution-based baseline (see text), and
our HSMM models (denoted “NTemp” and “NTemp+AR”
for the non-autoregressive and autoregressive versions, resp.)
on the validation and test portions of the E2E dataset.
“ROUGE” is ROUGE-L. Models are evaluated using the of-
ficial E2E NLG Challenge scoring scripts.

BLEU NIST ROUGE-4

Template KN † 19.8 5.19 10.7
NNLM (field) † 33.4 7.52 23.9
NNLM (field & word) † 34.7 7.98 25.8
NTemp 34.2 7.94 35.9
NTemp+AR 34.8 7.59 38.6

Seq2seq (Liu et al., 2018) 43.65 - 40.32

Table 2: Top: comparison of the two best neural systems of
Lebret et al. (2016), their templated baseline, and our HSMM
models (denoted “NTemp” and “NTemp+AR” for the non-
autoregressive and autoregressive versions, resp.) on the test
portion of the WikiBio dataset. Models marked with a † are
from Lebret et al. (2016), and following their methodology
we use ROUGE-4. Bottom: state-of-the-art seq2seq-style re-
sults from Liu et al. (2018).

performs them. On the E2E data, for example,
we see in Table 1 that the SUB baseline, despite
having fairly impressive performance for a non-
parametric model, fares the worst. The neural
HSMM models are largely competitive with the
encoder-decoder system on the validation data, de-
spite offering the benefits of interpretability and
controllability; however, the gap increases on test.

Table 2 evaluates our system’s performance on
the test portion of the WikiBio dataset, compar-
ing with the systems and baselines implemented
by Lebret et al. (2016). Again for this dataset we
see that their templated Kneser-Ney model under-
performs on the automatic metrics, and that neu-
ral models improve on these results. Here the
HSMMs are competitive with the best model of
Lebret et al. (2016), and even outperform it on
ROUGE. We emphasize, however, that recent, so-
phisticated approaches to encoder-decoder style

Travellers Rest Beefeater

name[Travellers Rest Beefeater], customerRating[3 out of 5],
area[riverside], near[Raja Indian Cuisine]

1. [Travellers Rest Beefeater]55 [is a]59 [3 star]43
[restaurant]11 [located near]25 [Raja Indian Cuisine]40 [.]53

2. [Near]31 [riverside]29 [,]44 [Travellers Rest Beefeater]55
[serves]3 [3 star]50 [food]1 [.]2

3. [Travellers Rest Beefeater]55 [is a]59 [restaurant]12
[providing]3 [riverside]50 [food]1 [and has a]17
[3 out of 5]26 [customer rating]16 [.]2 [It is]8 [near]25
[Raja Indian Cuisine]40 [.]53

4. [Travellers Rest Beefeater]55 [is a]59 [place to eat]12
[located near]25 [Raja Indian Cuisine]40 [.]53

5. [Travellers Rest Beefeater]55 [is a]59 [3 out of 5]5
[rated]32 [riverside]43 [restaurant]11 [near]25
[Raja Indian Cuisine]40 [.]53

Table 3: Impact of varying the template z(i) for a single x
from the E2E validation data; generations are annotated with
the segmentations of the chosen z(i). Results were obtained
using the NTemp+AR model from Table 1.

database-to-text generation have since surpassed
the results of Lebret et al. (2016) and our own,
and we show the recent seq2seq style results of Liu
et al. (2018), who use a somewhat larger model, at
the bottom of Table 2.

7.1 Qualitative Evaluation
We now qualitatively demonstrate that our gener-
ations are controllable and interpretable.

Controllable Diversity One of the powerful as-
pects of the proposed approach to generation is
that we can manipulate the template z(i) while
leaving the database x constant, which allows for
easily controlling aspects of the generation. In Ta-
ble 3 we show the generations produced by our
model for five different neural template sequences
z(i), while fixing x. There, the segments in each
generation are annotated with the latent states de-
termined by the corresponding z(i). We see that
these templates can be used to affect the word-
ordering, as well as which fields are mentioned in
the generated text. Moreover, because the discrete
states align with particular fields (see below), it is
generally simple to automatically infer to which
fields particular latent states correspond, allowing
users to choose which template best meets their re-
quirements. We emphasize that this level of con-
trollability is much harder to obtain for encoder-
decoder models, since, at best, a large amount of
sampling would be required to avoid generating
around a particular mode in the conditional distri-
bution, and even then it would be difficult to con-
trol the sort of generations obtained.

kenny warren

name: kenny warren, birth date: 1 april 1946, birth name: kenneth warren deutscher, birth place: brooklyn, new york,
occupation: ventriloquist, comedian, author, notable work: book - the revival of ventriloquism in america

1. [kenneth warren deutscher]132 [ ( ]75 [born]89 [april 1, 1946]101 [ ) ]67 [is an american]82 [author]20 [and]1
[ventriloquist and comedian]69 [.]88

2. [kenneth warren deutscher]132 [ ( ]75 [born]89 [april 1, 1946]101 [ ) ]67 [is an american]82 [author]20
[best known for his]95 [the revival of ventriloquism]96 [.]88

3. [kenneth warren]16 [“kenny” warren]117 [ ( ]75 [born]89 [april 1, 1946]101 [ ) ]67 [is an american]127
[ventriloquist, comedian]28 [.]133

4. [kenneth warren]16 [“kenny” warren]117 [ ( ]75 [born]89 [april 1, 1946]101 [ ) ]67 [is a]104 [new york]98 [author]20 [.]133
5. [kenneth warren deutscher]42 [is an american]82 [ventriloquist, comedian]118 [based in]15 [brooklyn, new york]84 [.]88

Table 4: Impact of varying the template z(i) for a single x from the WikiBio validation data; generations are annotated with
the segmentations of the chosen z(i). Results were obtained using the NTemp model from Table 2.

Interpretable States Discrete states also pro-
vide a method for interpreting the generations pro-
duced by the system, since each segment is explic-
itly typed by the current hidden state of the model.
Table 4 shows the impact of varying the template
z(i) for a single x from the WikiBio dataset. While
there is in general surprisingly little stylistic varia-
tion in the WikiBio data itself, there is variation in
the information discussed, and the templates cap-
ture this. Moreover, we see that particular discrete
states correspond in a consistent way to particular
pieces of information, allowing us to align states
with particular field types. For instance, birth
names have the same hidden state (132), as do
names (117), nationalities (82), birth dates (101),
and occupations (20).

To demonstrate empirically that the learned
states indeed align with field types, we calculate
the average purity of the discrete states learned for
both datasets in Table 5. In particular, for each
discrete state for which the majority of its gen-
erated words appear in some rj , the purity of a
state’s record type alignment is calculated as the
percentage of the state’s words that come from
the most frequent record type the state represents.
This calculation was carried out over training ex-
amples that belonged to one of the top 100 most
frequent templates. Table 5 indicates that discrete
states learned on the E2E data are quite pure. Dis-
crete states learned on the WikiBio data are less
pure, though still rather impressive given that there
are approximately 1700 record types represented
in the WikiBio data, and we limit the number of
states to 135. Unsurprisingly, adding autoregres-
siveness to the model decreases purity on both
datasets, since the model may rely on the autore-
gressive RNN for typing, in addition to the state’s
identity.

NTemp NTemp+AR

E2E 89.2 (17.4) 85.4 (18.6)
WikiBio 43.2 (19.7) 39.9 (17.9)

Table 5: Empirical analysis of the average purity of dis-
crete states learned on the E2E and WikiBio datasets, for the
NTemp and NTemp+AR models. Average purities are given
as percents, and standard deviations follow in parentheses.
See the text for full description of this calculation.

8 Conclusion and Future Work

We have developed a neural, template-like gen-
eration model based on an HSMM decoder,
which can be learned tractably by backpropagat-
ing through a dynamic program. The method al-
lows us to extract template-like latent objects in
a principled way in the form of state sequences,
and then generate with them. This approach scales
to large-scale text datasets and is nearly competi-
tive with encoder-decoder models. More impor-
tantly, this approach allows for controlling the
diversity of generation and for producing inter-
pretable states during generation. We view this
work both as the first step towards learning dis-
crete latent variable template models for more dif-
ficult generation tasks, as well as a different per-
spective on learning latent variable text models in
general. Future work will examine encouraging
the model to learn maximally different (or mini-
mal) templates, which our objective does not ex-
plicitly encourage, templates of larger textual phe-
nomena, such as paragraphs and documents, and
hierarchical templates.
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