CHALLENGES IN DATA-TO-DOCUMENT GENERATION

Sam Wiseman, Stuart M. Shieber, Alexander M. Rush Harvard University

March 21, 2019

INTRODUCTION

- Neural systems begin to move toward generating longer outputs in response to longer and more complicated inputs.
- Generated texts begin to display reference errors, inter-se ntence incoherence, and a lack of fidelity to the source material.
- Introduce a large-scale corpus of data records of basketball games paired with descriptive documents.
- Suggest a series of extractive evaluation metrics to automatically evaluate performance.

DATA-TO-TEXT DATASETS

Setting:

Set of records $s = \{r_j\}_{j=1}^J$

Entity: r.e Value: r.m Relation: r.t

Generated text: $\hat{y}_{1:T} = \hat{y}_1, \dots, \hat{y}_T$

Dataset: $(s, y_{1:T})$ $y_{1:T}$ Gold Summary of s

DATA-TO-TEXT DATASETS

Existing Datasets: WEATHERGOV and ROBOCUP

Problem: Simple, Short generations, Machine-generated

Proposed Datasets: ROTOWIRE and SBNATION

Longer target texts, a larger vocabulary space, and

to require more difficult content selection

DATA-TO-TEXT DATASETS

TEAM	WIN	LOSS	PTS	FG_PCT	RB	AS
Heat	11	12	103	49	47	27
Hawks	7	15	95	43	33	20

	AS	RB	PT	FG	FGA	CITY
PLAYER						
Tyler Johnson	5	2	27	8	16	Miami
Dwight Howard	4	17	23	9	11	Atlanta
Paul Millsap	2	9	21	8	12	Atlanta
Goran Dragic	4	2	21	8	17	Miami
Wayne Ellington	2	3	19	7	15	Miami
Dennis Schroder	7	4	17	8	15	Atlanta
Rodney McGruder	5	5	11	3	8	Miami
Thabo Sefolosha	5	5	10	5	11	Atlanta
Kyle Korver	5	3	9	3	9	Atlanta

The Atlanta Hawks defeated the Miami Heat , 103 - 95 , at Philips Arena on Wednesday . Atlanta was in desperate need of a win and they were able to take care of a shorthanded Miami team here. Defense was key for the Hawks, as they held the Heat to 42 percent shooting and forced them to commit 16 turnovers . Atlanta also dominated in the paint, winning the rebounding battle, 47 - 34, and outscoring them in the paint 58 - 26.The Hawks shot 49 percent from the field and assisted on 27 of their 43 made baskets. This was a near wire - to - wire win for the Hawks, as Miami held just one lead in the first five minutes. Miami (7 -15) are as beat - up as anyone right now and it 's taking a toll on the heavily used starters . Hassan Whiteside really struggled in this game, as he amassed eight points, 12 rebounds and one blocks on 4 - of - 12 shooting ...

EVALUATION METHODS

Shortcomings of current approaches:

- BLEU: It primarily rewards fluent text generation, rather than generations that capture the most important information in the database
- Human evaluation: Less convenient

EXTRACTION EVALUATION

	WIN	LOSS	PTS	FG_PCT	RB	AS
TEAM						
Heat	11	12	103	49	47	27
Hawks	7	15	95	43	33	20

	AS	RB	PT	FG	FGA	CITY
PLAYER						
Tyler Johnson	5	2	27	8	16	Miami
Dwight Howard	4	17	23	9	11	Atlanta
Paul Millsap	2	9	21	8	12	Atlanta
Goran Dragic	4	2	21	8	17	Miami
Wayne Ellington	2	3	19	7	15	Miami
Dennis Schroder	7	4	17	8	15	Atlanta
Rodney McGruder	5	5	11	3	8	Miami
Thabo Sefolosha	5	5	10	5	11	Atlanta
Kyle Korver	5	3	9	3	9	Atlanta

The Atlanta Hawks defeated the Miami Heat , 103 - 95, at Philips Arena on Wednesday . Atlanta was in desperate need of a win and they were able to take care of a shorthanded Miami team here. Defense was key for the Hawks, as they held the Heat to 42 percent shooting and forced them to commit 16 turnovers . Atlanta also dominated in the paint, winning the rebounding battle, 47 - 34, and outscoring them in the paint 58 - 26.The Hawks shot 49 percent from the field and assisted on 27 of their 43 made baskets. This was a near wire - to - wire win for the Hawks, as Miami held just one lead in the first five minutes . Miami (7 -15) are as beat - up as anyone right now and it 's taking a toll on the heavily used starters . Hassan Whiteside really struggled in this game, as he amassed eight points, 12 rebounds and one blocks on 4 - of - 12 shooting ...

extract: r.e, r.m predict: r.te.g., (r.e, r.m, r.t) = (MIAMI HEAT, 95, POINTS) $t(e, m) = \{r.t : r \in \mathbf{s}, r.e = e, r.m = m\}$ $\mathcal{L}(\boldsymbol{\theta}) = -\sum_{e,m} \log \sum_{t' \in t(e,m)} p(r.t = t' \mid e, m; \boldsymbol{\theta}).$

COMPARING GENERATION

Three induced metrics:

- Content Selection (CS): precision and recall of unique relations r extracted from $\hat{y}_{1:T}$ that are also extracted from $y_{1:T}$
- Relation Generation (RG): precision and number of unique relations r extracted from $\hat{y}_{1:T}$ that also appear in s
- Content Ordering (CO): normalized Damerau-Levenshtein Distance between the sequences of records extracted from $y_{1:T}$ and that extracted from $\hat{y}_{1:T}$

NEURAL DATA-TO-DOCUMENT MODEL

- Base Model
- Copy-based generation
- Reconstruction

BASE MODEL

- Embedding: $r \in s$ to \tilde{r}
- One layer MLP
- Source data-records: $\tilde{s} = {\{\tilde{r}_j\}_{j=1}^J}$
- · LSTM decoder with attention and input-feeding
- Minimize the negative log likelihood of words

in the gold text $y_{1:T}$ given source material s

NEURAL DATA-TO DOCUMENT MODEL

COPY: z_t to indicate whether \hat{y}_t is from the source $\hat{y}_t = r.m$

$$p(\hat{y}_t | \hat{y}_{1:t-1}, \boldsymbol{s}) = \sum_{z \in \{0,1\}} p(\hat{y}_t, z_t = z | \hat{y}_{1:t-1}, \boldsymbol{s}).$$

· Joint Copy

Conditional Copy

$$p(\hat{y}_{t}, z_{t} | \hat{y}_{1:t-1}, \boldsymbol{s}) \propto \qquad p(\hat{y}_{t}, z_{t} | \hat{y}_{1:t-1}, \boldsymbol{s}) = \begin{cases} \exp(\hat{y}_{t}, \hat{y}_{1:t-1}, \boldsymbol{s}) & z_{t} = 1, \, \hat{y}_{t} \in \boldsymbol{s} \\ 0 & z_{t} = 1, \, \hat{y}_{t} \notin \boldsymbol{s} \end{cases} \begin{cases} p_{\exp}(\hat{y}_{t} | z_{t}, \hat{y}_{1:t-1}, \boldsymbol{s}) p(z_{t} | \hat{y}_{1:t-1}, \boldsymbol{s}) & z_{t} = 1 \\ p_{\exp}(\hat{y}_{t} | z_{t}, \hat{y}_{1:t-1}, \boldsymbol{s}) p(z_{t} | \hat{y}_{1:t-1}, \boldsymbol{s}) & z_{t} = 0 \end{cases}$$

$$gen(\hat{y}_{t}, \hat{y}_{1:t-1}, \boldsymbol{s}) \qquad z_{t} = 0,$$

$$r(y_t) = \{r \in m{s}: r.m = y_t, ext{same-sentence}(r.e, r.m)\}$$
 $p_{ ext{copy}}(y_t \mid z_t, y_{1:t-1}, m{s}) = \sum_{r \in r(y_t)} p(r \mid z_t, y_{1:t-1}, m{s})$

RECONSTRUCTION LOSS

 b_i , hidden state block

$$p(r.e, r.m \mid \boldsymbol{b}_i) = \operatorname{softmax}(f(\boldsymbol{b}_i))$$

Reconstruction Loss for b_i .

$$egin{aligned} \mathcal{L}(oldsymbol{ heta}) &= -\sum_{k=1}^K \min_{r \in oldsymbol{s}} \log p_k(r \,|\, oldsymbol{b}_i; oldsymbol{ heta}) \ &= -\sum_{k=1}^K \min_{r \in oldsymbol{s}} \sum_{x \in \{e,m,t\}} \log p_k(r.x \,|\, oldsymbol{b}_i; oldsymbol{ heta}), \end{aligned}$$

TEMPLATED GENERATOR

```
The <team1> (<wins1>-<losses1>) defeated the <team2> (<wins2>-<losses2>) <pts1>-<pts2>.
```

```
<player> scored <pts> points (<fgm>-
<fga> FG, <tpm>-<tpa> 3PT, <ftm>-
<fta> FT) to go with <reb> rebounds.
```

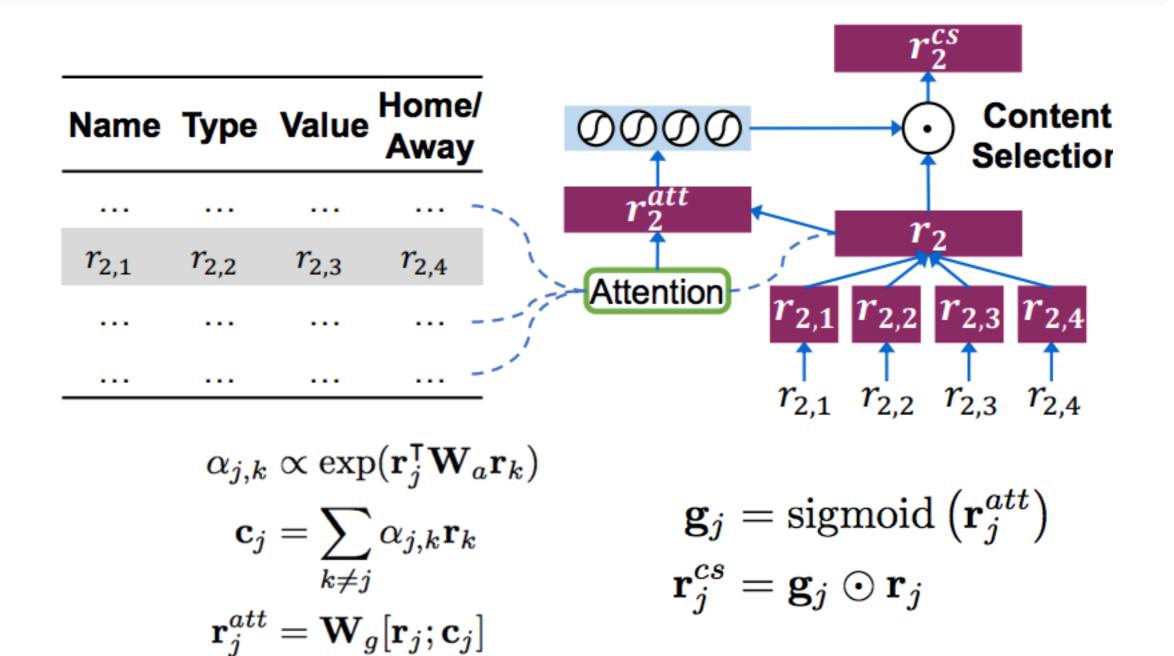
RESULT

		Development						
		RG		CS		СО	PPL	BLEU
Beam	Model	P%	#	P%	R%	DLD%		
	Gold	91.77	12.84	100	100	100	1.00	100
	Template	99.35	49.7	18.28	65.52	12.2	N/A	6.87
	Joint Copy	47.55	7.53	20.53	22.49	8.28	7.46	10.41
B=1	Joint Copy + Rec	57.81	8.31	23.65	23.30	9.02	7.25	10.00
D =1	Joint Copy $+$ Rec $+$ TVD	60.69	8.95	23.63	24.10	8.84	7.22	12.78
	Conditional Copy	68.94	9.09	25.15	22.94	9.00	7.44	13.31
	Joint Copy	47.00	10.67	16.52	26.08	7.28	7.46	10.23
B=5	Joint Copy + Rec	62.11	10.90	21.36	26.26	9.07	7.25	10.85
D =3	Joint Copy $+$ Rec $+$ TVD	57.51	11.41	18.28	25.27	8.05	7.22	12.04
	Conditional Copy	71.07	12.61	21.90	27.27	8.70	7.44	14.46
					Test			
	Template	99.30	49.61	18.50	64.70	8.04	N/A	6.78
	Joint Copy + Rec (B=5)	61.23	11.02	21.56	26.45	9.06	7.47	10.88
	Joint Copy + Rec + TVD ($B=1$)	60.27	9.18	23.11	23.69	8.48	7.42	12.96
	Conditional Copy (B=5)	71.82	12.82	22.17	27.16	8.68	7.67	14.49

Data-to-Text Generation with Content Selection and Planning

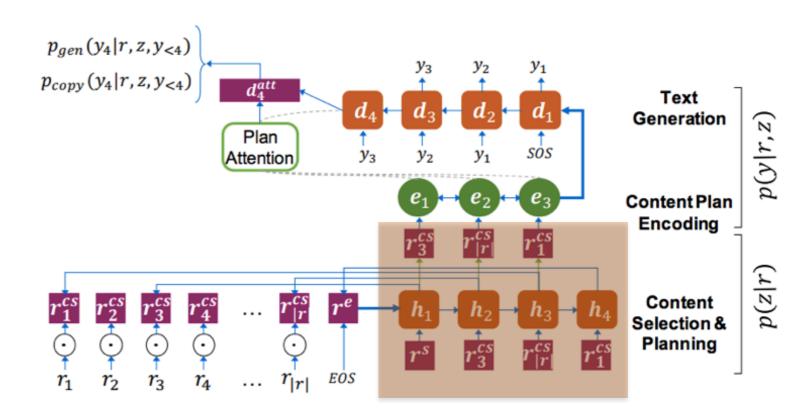
Trend	Dataset	Best Method	Paper title
	RotoWire (Relation Generation)	Neural Content Planningconditional copy	Data-to-Text Generation with Content Selection and Planning
	Rotowire (Content Selection)	Neural Content Planningconditional copy	Data-to-Text Generation with Content Selection and Planning
	RotoWire (Content Ordering)	Neural Content Planningconditional copy	Data-to-Text Generation with Content Selection and Planning
	RotoWire	Neural Content Planningconditional copy	Data-to-Text Generation with Content Selection and Planning

Ratish Puduppully and Li Dong and Mirella Lapata Institute for Language, Cognition and Computation School of Informatics, University of Edinburgh


INTRODUCTION

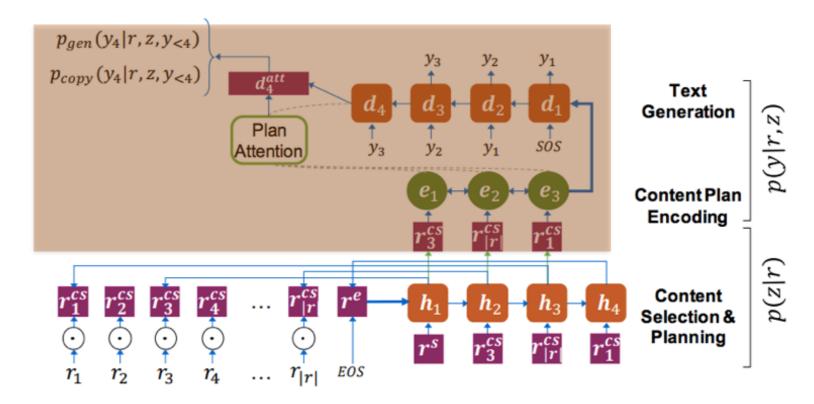
- Data-to-text generation: what to say? in what order? how to say it?
- Neural Model Problem: end-to-end, without modeling what to say and in what order
- Propose a neural network architecture which incorporates content selection and planning without sacrificing endto-end training

MODEL


CONTENT SELECTION GATE

CONTENT PLANNING

what to say & in what order


$$z = z_1 \dots z_{|z|}$$
 $z_k \in \{r_j\}_{j=1}^{|r|}$ $p(z|r) = \prod_{k=1}^{|z|} p(z_k|z_{< k}, r)$

$$p(z_k = r_j | z_{< k}, r) \propto \exp(\mathbf{h}_k^{\mathsf{T}} \mathbf{W}_c \mathbf{r}_j^{cs})$$

TEXT GENERATION

$$eta_{t,k} \propto \exp(\mathbf{d}_t^\intercal \mathbf{W}_b \mathbf{e}_k)$$
 $\mathbf{q}_t = \sum_k eta_{t,k} \mathbf{e}_k$
 $\mathbf{d}_t^{att} = anh(\mathbf{W}_d[\mathbf{d}_t; \mathbf{q}_t])$
 $p_{gen}(y_t|y_{< t}, z, r) = softmax_{y_t}(\mathbf{W}_y \mathbf{d}_t^{att} + \mathbf{b}_y)$

TRAINING AND INFERENCE

$$\max \sum_{(r,z,y)\in\mathcal{D}} \log p(z|r) + \log p(y|r,z)$$

$$\hat{z} = rg \max_{z'} p(z'|r)$$
 $\hat{y} = rg \max_{y'} p(y'|r, \hat{z})$

RESULT

Model	RG		C	S	CO	BLEU
Model	#	P%	P%	R%	DLD%	BLEU
TEMPL	54.29	99.92	26.61	59.16	14.42	8.51
WS-2017	23.95	75.10	28.11	35.86	15.33	14.57
ED+JC	22.98	76.07	27.70	33.29	14.36	13.22
ED+CC	21.94	75.08	27.96	32.71	15.03	13.31
NCP+JC	33.37	87.40	32.20	48.56	17.98	14.92
NCP+CC	33.88	87.51	33.52	51.21	18.57	16.19
NCP+OR	21.59	89.21	88.52	85.84	78.51	24.11

Model	RG	CS	CO	BLEU
Model	# P%	P% R%	DLD%	BLEU
ED+CC	21.94 75.08	27.96 32.71	15.03	13.31
CS+CC	24.93 80.55	28.63 35.23	15.12	13.52
CP+CC	33.73 84.85	29.57 44.72	15.84	14.45
NCP+CC	33.88 87.51	33.52 51.21	18.57	16.19
NCP	34.46 —	38.00 53.72	20.27	

Model	RG		C	S	CO	BLEU
Model	#	P%	P%	R%	DLD%	BLEU
TEMPL	54.23	99.94	26.99	58.16	14.92	8.46
WS-2017	23.72	74.80	29.49	36.18	15.42	14.19
NCP+JC	34.09	87.19	32.02	47.29	17.15	14.89
NCP+CC	34.28	87.47	34.18	51.22	18.58	16.50

TEMPL: template-based

ED: Encoder-decoder

JC: Joint Copy

CC: Conditional Copy

NCP: Neural Content Planning

RG: Relation Generation

CS: Content Selection

CO: Content Ordering

NCP: Neural Content Planning

CP: Content Planning

OR: Oracle content plans

CONCLUSION

- Evaluation metrics are still not sound enough.
 Information extraction itself has inaccuracies.
- In the future, we can learn more detail-oriented plans involving inference over multiple facts and entities
- Future work on this task might include approaches that process or attend to the source records in a more sophisticated way
- There are very few data-to-text tasks and datasets explored, more tasks can be put forward.