Content preserving text generation with attribute controls

Lajanugen Logeswaran, Honglak Lee, Samy Bengio University of Michigan, Google Brain

March 19, 2019

1. Introduction

2. Formulation

- Formulation
- Content compatibility
- Attribute compatibility

3. Experiments

- Metrics
- Sentiment Experiments
- Monolingual Translation
- Ablative study
- Simultaneous control of multiple attributes

4. Conclusion

Content preserving text generation with attribute controls

Lajanugen Logeswaran, Honglak Lee, Samy Bengio Uni[,]

1. Introduction

2. Formulation

- Formulation
- Content compatibility
- Attribute compatibility

3. Experiments

- Metrics
- Sentiment Experiments
- Monolingual Translation
- Ablative study
- Simultaneous control of multiple attributes

4. Conclusion

Content preserving text generation with attribute controls

Lajanugen Logeswaran, Honglak Lee, Samy Bengio Uni[,]

Introduction

- The style transfer problem which aims to change more abstract properties of an image has seen significant advances.
- The discrete sequential natural of language makes it difficult to approach language problems in a similar manner.
- The focus of this work is on the problem of modifying textual attributes in sentences.
- Create a model that can control multiple attributes of generated text at the same time.

1. Introduction

2. Formulation

- Formulation
- Content compatibility
- Attribute compatibility

3. Experiments

- Metrics
- Sentiment Experiments
- Monolingual Translation
- Ablative study
- Simultaneous control of multiple attributes

4. Conclusion

Content preserving text generation with attribute controls

Lajanugen Logeswaran, Honglak Lee, Samy Bengio Uni[,]

Formulation

- K attributes of interest $\{a_1, \ldots, a_K\}$.
- A set of labeled sentences $D = \{(x^n, l^n)\}_{n=1}^N$ (l^n is a set of labels for a subset of the attributes)
- Given a sentence x and attributes $l' = (l_1, \ldots, l_K)$, the goal is to produce a sentence that shares the content of x, but reflects the attribute values specified by l'.

Formulation

Content preserving text generation with attribute controls

Lajanugen Logeswaran, Honglak Lee, Samy Bengio Univ

Model Overview

- Generative Model $G = (G_{enc}, G_{dec})$
- G should generate a sentence that is closely related in meaning to the input sentence and consistent with the attributes.
- $G_{enc}: z_x = G_{enc}(x)$
- $G_{dec}: y \sim P_G(\cdot | z_x, l')$

Model Overview

Content preserving text generation with attribute controls

Lajanugen Logeswaran, Honglak Lee, Samy Bengio Uni[,]

Content compatibility

Two types of reconstruction losses to encourage content compatibility.

• Autoencoding loss

$$\mathcal{L}^{ae}(x,l) = -log P_G(x|z_x,l)$$

• Back-translation loss

$$\mathcal{L}^{bt}(x,l) = -log P_G(x|z_y,l)$$

Content preserving text generation with attribute controls

Lajanugen Logeswaran, Honglak Lee, Samy Bengio Univ

Content compatibility

- A common pitfall of the auto-encoding loss in auto-regressive models.
 - Simply copy the input sequence without capturing and informative features.
- A de-nosing formulation is often considered: deleting, swapping or re-arranging words.
 - However, the generated sample \boldsymbol{y} can be mismatched in content from \boldsymbol{x}

Content compatibility

This paper addresses these issues by interpolating the latent representations of ground truth sentence x and generated sentence y.

• merge the autoencoding and back-translation losses by fusing the two latent representations z_x, z_y

$$z_{xy} = g \odot z_x + (1 - g) \odot z_y$$

where g is a binary random vector of values sampled from a Bernoulli distribution.

Intepolated reconstruction loss

$$\mathcal{L}^{int} = E_{(x,l) \sim p_{data}, y \sim p_G(\cdot | z_x, l')} [-log p_G(x | z_{xy}, l)]$$

Content preserving text generation with attribute controls

Lajanugen Logeswaran, Honglak Lee, Samy Bengio Univ

Attribute compatibility

Adversarial loss

$$\mathcal{L}^{adv} \min_{G} \max_{D} \mathbb{E}[log D(h_x, l) + log(1 - D(h_y, l'))]$$

It is possible that the discriminator ignores the attributes and makes the real/fake decision based on just the hidden states, or vice versa.

• To prevent this situation, a new objective is proposed

 $\mathcal{L}^{adv} \min_{G} \max_{D} \mathbb{E}[2log D(h_x, l) + log(1 - D(h_y, l^{'})) + log(1 - D(h_x, l^{'}))]$

• The overall loss function

$$\mathcal{L}^{int} + \mathcal{L}^{adv}$$

Content preserving text generation with attribute controls

Lajanugen Logeswaran, Honglak Lee, Samy Bengio Uni[,]

1. Introduction

2. Formulation

- Formulation
- Content compatibility
- Attribute compatibility

3. Experiments

- Metrics
- Sentiment Experiments
- Monolingual Translation
- Ablative study
- Simultaneous control of multiple attributes

4. Conclusion

Content preserving text generation with attribute controls

Lajanugen Logeswaran, Honglak Lee, Samy Bengio Uni[,]

Metrics

- Attribute accuracy A pre-trained sentiment classifier
- Content compatibility

$$f_{content}(M, M') = 0.5[\mathbb{E}_{x \sim D_{src}}BLEU(x, M' \circ M(x)) + \mathbb{E}_{x \sim D_{tgt}}BLEU(x, M \circ M'(x))]$$

where $M \circ M'(x)$ represents translating $x \in D_{src}$ to domain D_{tgt} and then back to D_{src} .

• Fluency A pre-trained language model

Content preserving text generation with attribute controls

Lajanugen Logeswaran, Honglak Lee, Samy Bengio Uni[,]

Data

Restaurant reviews dataset(447k/128k) & IMDB review corpus(128k/36k)

Content preserving text generation with attribute controls

Lajanugen Logeswaran, Honglak Lee, Samy Bengio Univ

• Quantitative evaluation

	Yelp Reviews				IMDB Reviews			
Model	Attribute ↑	Content ↑		Fluency ↓	Attribute ↑	Content ↑		Fluency ↓
	Accuracy	B-1	B-4	Perp.	Accuracy	B-1	B-4	Perp.
Ctrl-gen [18]	76.36%	11.5	0.0	156	76.99%	15.4	0.1	94
Cross-align [22]	90.09%	41.9	3.9	180	88.68%	31.1	1.1	63
Ours	90.50%	53.0	7.5	133	94.46%	40.3	2.2	52

• Qualitative evaluation

Restaurant reviews				
negative \rightarrow positive				
Query	the people behind the counter were not friendly whatsoever.			
Ctrl gen [18]	the food did n't taste as fresh as it could have been either .			
Cross-align [22]	the owners are the staff is so friendly .			
Ours	the people at the counter were very friendly and helpful .			
positive \rightarrow negative				
Query	they do an exceptional job here, the entire staff is professional and accommo-			
	dating !			
Ctrl gen [18]	very little water just boring ruined !			
Cross-align [22]	they do not be back here, the service is so rude and do n't care !			
Ours	they do not care about customer service, the staff is rude and unprofessional !			
Movie reviews				
	negative \rightarrow positive			
Query	once again, in this short, there isn't much plot.			
Ctrl gen [18]	it's perfectly executed with some idiotically amazing directing .			
Cross-align [22]	but <unk>,, the film is so good, it is.</unk>			
Ours	first off, in this film, there is nothing more interesting.			
$positive \rightarrow negative$				
Query	that's another interesting aspect about the film.			
Ctrl gen [18]	peter was an ordinary guy and had problems we all could <unk> with</unk>			
Cross-align [22]	it's the <unk> and the plot.</unk>			
Ours	there's no redeeming qualities about the film.			

Content preserving text generation with attribute controls

Lajanugen Logeswaran, Honglak Lee, Samy Bengio Uni[,]

• Human evaluation

Model	Attribute	Content	Fluency
Ctrl-gen [18]	66.0%	6.94%	2.51
Cross-align [22]	91.2%	22.04%	2.54
Ours	92.8%	55.10%	3.19

Monolingual Translation

- Use a dataset of Shakespeare plays
- 17k pairs for training and 2k,1k pairs respectively for development and test. All remaining 80k are considered unpaired.
- Train the model using supervised learning and fine-tune on the unpaired data using the proposed objective.

Monolingual Translation

• The results show that the model is capable of finding sentence alignments by exploiting the unlabeled data.

Supervision	Model	BLEU
Daired data	Seq2seq	10.4
r alleu uata	Seq2seq-bi	11.15
Unpaired data	Ours	7.65
Paired + Unpaired data	Ours	13.89

Ablative study

Simultaneous control of multiple attributes

Mood	Tense	Voice	Neg.	john was born in the camp
Indicative	Past	Passive	No	john was born in the camp.
Indicative	Past	Passive	Yes	john wasn't born in the camp.
Indicative	Past	Active	No	john had lived in the camp.
Indicative	Past	Active	Yes	john didn't live in the camp.
Indicative	Present	Passive	No	john is born in the camp.
Indicative	Present	Passive	Yes	john isn't born in the camp.
Indicative	Present	Active	No	john has lived in the camp.
Indicative	Present	Active	Yes	john doesn't live in the camp.
Indicative	Future	Passive	No	john will be born in the camp.
Indicative	Future	Passive	Yes	john will not be born in the camp.
Indicative	Future	Active	No	john will live in the camp.
Indicative	Future	Active	Yes	john will not survive in the camp.
Subjunctive	Cond	Passive	No	john could be born in the camp.
Subjunctive	Cond	Passive	Yes	john couldn't live in the camp.
Subjunctive	Cond	Active	No	john could live in the camp.
Subjunctive	Cond	Active	Yes	john couldn't live in the camp.

1. Introduction

2. Formulation

- Formulation
- Content compatibility
- Attribute compatibility

3. Experiments

- Metrics
- Sentiment Experiments
- Monolingual Translation
- Ablative study
- Simultaneous control of multiple attributes

4. Conclusion

Content preserving text generation with attribute controls

Lajanugen Logeswaran, Honglak Lee, Samy Bengio Uni[,]

Conclusion

- Back-translation is useful for attribute control of discrete data.
- The proposed model can easily extend to the multiple attribute scenario.
- It would be interesting future work to consider attribute with continues values and a much larger set of semantic and syntactic attributes.