# Modeling Multi-turn Conversation with Deep Utterance Aggregation

Zhuosheng Zhang\*, Jiangtong Li\*, Pengfei Zhu, Hai <sup>†</sup>, Gongshen Liu

### Task Definition

- Each conversation in the concerned multi-turn response retrieval task can be described as a triple <C,R,Y>.
- $C = \{U_1, ..., U_t\}$  is the conversation context where  $\{U_k\}$  denotes the k-th utterance.
- R is a response of the conversation.
- Y belongs to  $\{0,1\}$ , where  $Y_i = 1$  means the response is proper, otherwise  $Y_i = 0$ .
- The aim is to build a discriminator  $F(\cdot, \cdot)$  on  $\langle C, R, Y \rangle$
- For each context-response pair {C, R}, F (C, R) measures the matching score of the pair.

#### Motivation

- The relevance of each utterance to the supposed response usually varies.
- The last utterance in a conversation empirically conveys the user intention while the other utterances depict the conversation in different aspects.
- Words in an utterance also hold different importance to the whole utterance representation.

# Contribution

- Use turns-aware aggregation to mix the last utterance with the previous ones.
- Employ self-attention based recurrent networks on each aggregated utterance.
- Release an E-commerce Dialogue Corpus (ECD) to facilitate the related studies.



- Utterance Representation
  - Use GRU to encode each utterance and response respectively

$$z_i = \sigma(W_z u_i + V_z h_{i-1})$$
  

$$r_i = \sigma(W_r u_i + V_r h_{i-1})$$
  

$$\tilde{h}_i = tanh(W_h u_i + V_h(r_i \odot h_{i-1}))$$
  

$$h_i = z_i \odot \tilde{h}_i + (1 - z_i) \odot h_{i-1}$$

- Turns-aware Aggregation
  - Mix the last utterance with the previous utterance and the response
- Matching Attention Flow
  - Using self-attention mechanism to filter the redundant information during the turns-aware aggregation





- Response Matching
  - Calculate the matching matrix between every utterance and the response.
  - Use CNN to capture the correlation information for each utterance.
- Attentive Turns Aggregation
  - Use GRU to aggregate the correlation information in each utterance.

#### Dataset

- Ubuntu Dialogue Corpus
  - P:N = 1:1 for train
  - P:N = 1:9 for valid and test
- Douban Conversation Corpus
  - P:N = 1:1 for train and valid
  - P:N = 1:9 for test
  - More than one proper answer for test
- E-commerce Dialogue Corpus
  - Same as Ubuntu Dialogue Corpus

#### Results

| Model                  | Ubuntu Dialogue Corpus |                    |                    | Douban Conversation Corpus |       |       |                    |            |            |
|------------------------|------------------------|--------------------|--------------------|----------------------------|-------|-------|--------------------|------------|------------|
|                        | R <sub>10</sub> @1     | R <sub>10</sub> @2 | R <sub>10</sub> @5 | MAP                        | MRR   | P@1   | R <sub>10</sub> @1 | $R_{10}@2$ | $R_{10}@5$ |
| TF-IDF                 | 0.410                  | 0.545              | 0.708              | 0.331                      | 0.359 | 0.180 | 0.096              | 0.172      | 0.405      |
| RNN                    | 0.403                  | 0.547              | 0.819              | 0.390                      | 0.422 | 0.208 | 0.118              | 0.223      | 0.589      |
| CNN                    | 0.549                  | 0.684              | 0.896              | 0.417                      | 0.440 | 0.226 | 0.121              | 0.252      | 0.647      |
| LSTM                   | 0.638                  | 0.784              | 0.949              | 0.485                      | 0.537 | 0.320 | 0.187              | 0.343      | 0.720      |
| BiLSTM                 | 0.630                  | 0.780              | 0.944              | 0.479                      | 0.514 | 0.313 | 0.184              | 0.330      | 0.716      |
| Multi-View             | 0.662                  | 0.801              | 0.951              | 0.505                      | 0.543 | 0.342 | 0.202              | 0.350      | 0.729      |
| DL2R                   | 0.626                  | 0.783              | 0.944              | 0.488                      | 0.527 | 0.330 | 0.193              | 0.342      | 0.705      |
| MV-LSTM                | 0.653                  | 0.804              | 0.946              | 0.498                      | 0.538 | 0.348 | 0.202              | 0.351      | 0.710      |
| Match-LSTM             | 0.653                  | 0.799              | 0.944              | 0.500                      | 0.537 | 0.345 | 0.202              | 0.348      | 0.720      |
| Attentive-LSTM         | 0.633                  | 0.789              | 0.943              | 0.495                      | 0.523 | 0.331 | 0.192              | 0.328      | 0.718      |
| Multi-Channel          | 0.656                  | 0.809              | 0.942              | 0.506                      | 0.543 | 0.349 | 0.203              | 0.351      | 0.709      |
| Multi-Channel $_{exp}$ | 0.368                  | 0.497              | 0.745              | 0.476                      | 0.515 | 0.317 | 0.179              | 0.335      | 0.691      |
| SMN                    | 0.726                  | 0.847              | 0.961              | 0.529                      | 0.569 | 0.397 | 0.233              | 0.396      | 0.724      |
| DUA                    | 0.752                  | 0.868              | 0.962              | 0.551                      | 0.599 | 0.421 | 0.243              | 0.421      | 0.780      |

#### Results

| Model                  | R <sub>10</sub> @1 | $R_{10}@2$ | $R_{10}@5$ |
|------------------------|--------------------|------------|------------|
| TF-IDF                 | 0.159              | 0.256      | 0.477      |
| RNN                    | 0.325              | 0.463      | 0.775      |
| CNN                    | 0.328              | 0.515      | 0.792      |
| LSTM                   | 0.365              | 0.536      | 0.828      |
| BiLSTM                 | 0.355              | 0.525      | 0.825      |
| Multi-View             | 0.421              | 0.601      | 0.861      |
| DL2R                   | 0.399              | 0.571      | 0.842      |
| MV-LSTM                | 0.412              | 0.591      | 0.857      |
| Match-LSTM             | 0.410              | 0.590      | 0.858      |
| Attentive-LSTM         | 0.401              | 0.581      | 0.849      |
| Multi-Channel          | 0.422              | 0.609      | 0.871      |
| Multi-Channel $_{exp}$ | 0.352              | 0.556      | 0.827      |
| SMN                    | 0.453              | 0.654      | 0.886      |
| DUA                    | 0.501              | 0.700      | 0.921      |

Table 3: Comparison of different models on E-commerce Dialogue Corpus.

# Ablation Study

|          | $R_{10}@1$ | $R_{10}@2$ | $R_{10}@5$ |
|----------|------------|------------|------------|
| DUA      | 0.501      | 0.700      | 0.921      |
| -CF      | 0.453      | 0.642      | 0.890      |
| -MAF     | 0.432      | 0.625      | 0.883      |
| -CF -MAF | 0.413      | 0.613      | 0.867      |

Table 5: Ablation study on ECD dataset. CF and MAF denote the *Context Fusion* and *Matching Attention Flow*. The bracket means the context fusion approach adopted by the model.

#### Conclusion

- Propose a deep utterance aggregation approach to form a fine-grained context representation.
- Release the first e-commerce dialogue corpus to research communities.
- Experiments on three datasets show the model can yield new state-of-the-art results.

# Thanks & QA