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Abstract

Responses generated by neural conversational models tend to lack informativeness
and diversity. We present Adversarial Information Maximization (AIM), an ad-
versarial learning strategy that addresses these two related but distinct problems.
To foster response diversity, we leverage adversarial training that allows distribu-
tional matching of synthetic and real responses. To improve informativeness, our
framework explicitly optimizes a variational lower bound on pairwise mutual infor-
mation between query and response. Empirical results from automatic and human
evaluations demonstrate that our methods significantly boost informativeness and
diversity.

1 Introduction

Neural conversational models are effective in generating coherent and relevant responses [1, 2, 3,
etc.]. However, the maximum-likelihood objective commonly used in these neural models fosters
generation of responses that average out the responses in the training data, resulting in the production
of safe and bland responses [4].

We argue that this problem is in fact twofold. The responses of a system may be diverse but
uninformative (e.g.,“I don’t know”, “I haven’t a clue”, “I haven’t the foggiest”, “I couldn’t tell you”),
and conversely informative but not diverse (e.g., always giving the same generic responses such as “I
like music”, but never “I like jazz”). A major challenge, then, is to strike the right balance between
informativeness and diversity. On the one hand, we seek informative responses that are relevant and
fully address the input query. Mathematically, this can be measured via Mutual Information (MI) [4],
by computing the reduction in uncertainty about the query given the response. On the other hand,
diversity can help produce responses that are more varied and unpredictable, which contributes to
making conversations seem more natural and human-like.

The MI approach of [4] conflated the problems of producing responses that are informative and
diverse, and subsequent work has not attempted to address the distinction explicitly. Researchers
have applied Generative Adversarial Networks (GANs) [5] to neural response generation [6, 7].
The equilibrium for the GAN objective is achieved when the synthetic data distribution matches
the real data distribution. Consequently, the adversarial objective discourages generating responses
that demonstrate less variation than human responses. However, while GANs help reduce the
level of blandness, the technique was not developed for the purpose of explicitly improving either
informativeness or diversity.

We propose a new architecture for dialog generation, Adversarial Information Maximization (AIM),
for training end-to-end neural response generation models that produce informative and diverse
conversational responses. Our approach exploits adversarial training to encourage diversity, and
explicitly maximizes a Variational Information Maximization Objective (VIMO) [8, 9] to produce
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Motivations

• The standard MLE average out the responses in the 
training data. (safe response problem)


• The problem is in fact twofold:


• Diversity


• Informativeness



Motivations

• Diverse but uninformative


• I dont know, I haven’t a clue, I couldn’t tell you


• Informative but not diverse


• “I like music” but never “I like Jazz”



Motivation 

• To strike a right balance between informativeness and 
diversity.


• MMI attacked informativeness


• GAN tried, however, was explicitly not for either 
informativeness or diversity



Motivations

• Adversarial Information Maximization


• GAN for diversity 


• Variational information Maximization Objective (VIMO) 
for informativeness



GAN

• Greedy sampling (argmax)


• Temperature trick for differentiability


• Compute cosine similarity between query and response


• WGAN-like objective


•  

used, instead of sampling from a multinomial distribution as in the standard LSTM. Thus, all the
randomness during the generation is clamped into the noise vector Z, and the reparameterization
trick [15] can be used (see Eqn. (4)). However, the argmax operation is not differentiable, thus no
gradient can be backpropagated through yt. Instead, we adopt the soft-argmax approximation [11]
below:

onehotpytq « softmax
´

pV ¨ Htq ¨ 1{⌧
¯

, (2)

where V is a weight matrix used for computing a distribution over words. When the temperature
⌧ Ñ 0, the argmax operation is exactly recovered [11], however the gradient will vanish. In practice,
⌧ should be selected to balance the approximation bias and the magnitude of gradient variance,
which scales up nearly quadratically with 1{⌧ . Note that when ⌧ “ 1 this recovers the setting in [7].
However, we empirically found that using a small ⌧ would result in accumulated ambiguity when
generating words in our experiment.

         SS          T̃̃T          TT

Wt
<latexit sha1_base64="OJnVQbmakRfaSEjsqJVFSJkYmls=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSQ2eAg2rNrbsLkHXiFaQGBVqD6ld/mLAs5gqZpMb0PDfFIKcaBZN8VulnhqeUTeiI9yxVNOYmyBenzsiFVYYkSrQthWSh/p7IaWzMNA5tZ0xxbFa9ufif18swuglyodIMuWLLRVEmCSZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC81ZfXSfuq7rl1775RazaKOMpwBudwCR5cQxPuoAU+MBjBM7zCmyOdF+fd+Vi2lpxi5hT+wPn8ATrAjbQ=</latexit><latexit sha1_base64="OJnVQbmakRfaSEjsqJVFSJkYmls=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSQ2eAg2rNrbsLkHXiFaQGBVqD6ld/mLAs5gqZpMb0PDfFIKcaBZN8VulnhqeUTeiI9yxVNOYmyBenzsiFVYYkSrQthWSh/p7IaWzMNA5tZ0xxbFa9ufif18swuglyodIMuWLLRVEmCSZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC81ZfXSfuq7rl1775RazaKOMpwBudwCR5cQxPuoAU+MBjBM7zCmyOdF+fd+Vi2lpxi5hT+wPn8ATrAjbQ=</latexit><latexit sha1_base64="OJnVQbmakRfaSEjsqJVFSJkYmls=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSQ2eAg2rNrbsLkHXiFaQGBVqD6ld/mLAs5gqZpMb0PDfFIKcaBZN8VulnhqeUTeiI9yxVNOYmyBenzsiFVYYkSrQthWSh/p7IaWzMNA5tZ0xxbFa9ufif18swuglyodIMuWLLRVEmCSZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC81ZfXSfuq7rl1775RazaKOMpwBudwCR5cQxPuoAU+MBjBM7zCmyOdF+fd+Vi2lpxi5hT+wPn8ATrAjbQ=</latexit><latexit sha1_base64="OJnVQbmakRfaSEjsqJVFSJkYmls=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSQ2eAg2rNrbsLkHXiFaQGBVqD6ld/mLAs5gqZpMb0PDfFIKcaBZN8VulnhqeUTeiI9yxVNOYmyBenzsiFVYYkSrQthWSh/p7IaWzMNA5tZ0xxbFa9ufif18swuglyodIMuWLLRVEmCSZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC81ZfXSfuq7rl1775RazaKOMpwBudwCR5cQxPuoAU+MBjBM7zCmyOdF+fd+Vi2lpxi5hT+wPn8ATrAjbQ=</latexit>
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Figure 3: Embedding-based sentence
discrimination.

Discriminator For the discriminator, we adopt a novel
approach inspired by the Deep Semantic Similarity Model
(DSSM) [16]. As shown in Figure 3, the source sentence
S, the synthetic response T̃ and the human response T

are all projected to an embedding space with fixed dimen-
sionality via different CNNs1. The embedding network
for S is denoted as Ws, while T̃ and T share a network
Wt. Given these embeddings, the cosine similarities of
WspSq versus WtpT̃ q and WtpT q are computed, denoted
as D pT, Sq and D pT̃ , Sq, respectively.  represents all
the parameters in the discriminator.

We empirically found that separate embedding for each
sentence yields better performance, comparing to concate-
nating pS, T q pairs. Presumably, mapping pS, T q pairs to the embedding space requires the embedding
network to capture the cross-sentence interaction features of how relevant the response is to the source.
Mapping them separately to the embedding space would divide the tasks into a sentence feature
extraction sub-task and a sentence feature matching sub-task, rather than entangle them together.
Thus the former might be slightly easier to train.

Objective The objective of our generator is to minimize the difference between D pT, Sq and
D pT̃ , Sq. Conversely, the discriminator tries to maximize such difference. The LGAN part in Eqn. (1)
is specified as

LGANp✓, q “ ´ET,T̃ ,S

”
f

´
D pT, Sq ´ D pT̃ , Sq

¯ı
, (3)

where fpxq fi 2tanh´1pxq scales the difference to deliver more smooth gradients.

Note that Eqn. (3) is conceptually related to [6] in which the discriminator loss is introduced to
provide sequence-level training signals. Specifically, the discriminator is responsible for assessing
both the genuineness of a response and the relevance to its corresponding source. The discriminator
employed in [6] evaluates a source-target pair by operations like concatenation. However, our
approach explicitly structures the discriminator as comparing the embeddings using cosine similarity
metrics, avoiding learning a neural network to match correspondence, which could be difficult.
Presumably our discriminator delivers more direct updating signal by explicitly defining how the
response is related to the source.

The objective in Eqn. (3) also resembles Wasserstein GAN (WGAN) [18] in that without the
monotonous scaling function f , the discriminator D can be perceived as the critic in WGAN
with embedding-structured regularization. See details in the Supplementary Material.

To backpropagate the learning signal from the discriminator D to the generator p✓pT |Sq, instead of
using the standard policy gradient as in [6], we consider a novel approach related to deterministic

1Note that encoders based on RNN or pure word embedding [17] are also possible, nevertheless we limit our
choice to CNN in this paper.
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VIMO

policy gradient (DPG) [10], which estimates the gradient as below:

r✓EppT̃ |S,ZqD pT̃ , Sq “ EppZqrT̃ D pT̃ , Sqr✓T̃ pS, Zq , (4)

where the expectation in Eqn. (4) is approximated by Monte Carlo approximation. Note that
r✓T̃ pS, Zq can be calculated because we use the soft-argmax approximation as in (2). The ran-
domness in [6] comes from the softmax-multinomial sampling in each local time step; while in
our approach, T̃ is a deterministic function of S and Z, therefore, the randomness is global and
separated out from the deterministic propagation, which resembles the reparameterization trick used
in variational autoencoder [15]. This separation of randomness allows gradients to deterministically
backpropagated through deterministic nodes rather than stochastic nodes. Consequently, the variance
of gradient estimation is largely reduced.

2.3 Information-promoting objective

We further seek to explicitly boost the MI between S and T̃ , with the aim of improving the informa-
tiveness of generated responses. Intuitively, maximizing MI allows the model to generate responses
that are more specific to the source, while generic responses are largely down-weighted.

Denoting the unknown oracle joint distribution as ppS, T q, we aim to find an encoder joint distribution
p

epS, T q “ p✓pT |SqppSq by learning a forward model p✓pT |Sq, such that p
epS, T q approximates

ppS, T q, while the mutual information under p
epS, T q remains high. See Figure 1 for illustration.

Empirical success has been achieved in [4] for mutual information maximization. However their
approach is limited by the fact that the MI-prompting objective is used only during testing time, while
the training procedure remains the same as the standard maximum likelihood training. Consequently,
during training the model is not explicitly specified for maximizing pertinent information. The
MI objective merely provides a criterion for reweighing existing responses, rather than asking the
generator to produce more interesting possible responses. Further, the hyperparameter that balances
the likelihood and anti-likelihood/reverse-likelihood terms is manually selected from p0, 1q, which
deviates from the actual MI objective, thus making the setup less principled.

Here, we consider explicitly maximizing mutual information IpepS, T q fi EpepS,T q log pepS,T q
ppSqpepT q

over p
epS, T q during training. However, IpepS, T q is intractable to directly optimize. To provide a

principled approach to maximizing MI, we adopt variational information maximization [8, 9]. The
mutual information IpepS, T q under the encoder joint distribution p

epS, T q is

IpepS, T q fi EpepS,T q log
p

epS, T q
ppSqpepT q

“HpSq ` EpepT qDKLppepS|T q, q�pS|T qq ` EpepS,T q log q�pS|T q
•EppSqEp✓pT |Sq log q�pS|T q fi LMIp✓,�q , (5)

where Hp¨q denotes the entropy of a random variable, and DKLp¨, ¨q denotes the KL divergence
between two distributions. q�pS|T q is a backward proposal network that approximates the unknown
p

epS|T q. For this backward model q�pS|T q, we use the same CNN-LSTM architecture as the forward
model [19]. We denote the MI objective EppSqEp✓pT |Sq log q�pS|T q as LMIp✓,�q, as used in Eqn. (1).

p
e(S, T )

p
d(S, T ) p(S, T )

S

T

Figure 4: Joint distribu-
tion matching of the query-
response pairs. Details ex-
plained in Section 2.4.

The gradient of LMIp✓,�q w.r.t. ✓ can be approximated by Monte
Carlo samples using the REINFORCE policy gradient method [20]

r✓LMIp✓,�q “ Ep✓pT |Sqrlog q�pS|T q ´ bs ¨ r✓ log p✓pT |Sq ,

r�LMIp✓,�q “ Ep✓pT |Sqr✓ log q�pS|T q , (6)

where b is denoted as a baseline. Here we choose a simple empirical
average for b [20]. Note that more sophisticated baselines based
on neural adaptation [21] or self-critic [22] can be also employed.
We complement the policy gradient objective with small proportion
of likelihood-maximization loss, which was shown to stabilize the
training as in [23].

As an alternative to the REINFORCE approach used in (6), we
also considered using the same DPG-like approach as in (4) for
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Dual Learning

approximated gradient calculation. Compared to the REINFORCE
approach, the DPG-like method yields lower variance, however is less memory efficient in this case.
This is because the LMIp✓, �q objective requires the gradient first back-propagated to synthetic text
through all backward LSTM nodes, then from synthetic text back-propagated to all forward LSTM
nodes, where both steps are densely connected. Hence, the REINFORCE approach is used in this
part.

2.4 Dual Adversarial Learning

One issue for the above approach is that learning an appropriate q�pS|T q may be difficult. Similar to
the forward model, this backward model q�pS|T q may also tend to be “bland” in generating source
from the target. As illustrated in Figure 4, supposing that we define a decoder joint distribution
p

dpS, T q “ q�pS|T qppT q, this distribution tends to be flat along T axis (i.e., tending to generate the
same source giving different target inputs). Similarly, p

epS, T q tends to be flat along S axis as well.

To solve this issue, inspired by recent work leveraging “cycle consistency” for image genera-
tion [12, 24], we implement a dual objective which treats source and target equally, by comple-
menting the objective in Eqn. (1) with decoder joint distribution matching, which can be written as

min
 

max
✓,�

LDAIM

“ ´EpT,T̃ ,Sq„pe
✓
fpD pS, T q ´ D pS, T̃ qq

´ EpT,S̃,Sq„pd
�
fpD pS, T q ´ D pS̃, T qq

` � ¨ EppSqEp✓pT |Sq log q�pS|T q
` � ¨ EppT qEq�pS|T q log p✓pT |Sq , (7)

       SS        T̃̃T

       SS        TT

       S̃̃S        TT

p✓

p✓

q�

q�

D

D

p
e(S, T )

p
d(S, T )

p(S, T )

Figure 5: Dual objective for
Adversarial Information Max-
imization (AIM).

where � is a hyperparameter balancing the GAN loss and the MI
loss. An illustration is shown in Figure 5.

With this dual objective, the forward and backward model are sym-
metric and collaborative. This is because a better estimation of the
backward model q�pS|T q will render a more accurate evaluation of
the mutual information IpepS, T q, which the optimization for the
forward model is based on. Correspondingly, the improvement over
the forward model will also provide positive impact on the learning of the backward model. As a
consequence, the forward and backward model work in a synergistic manner to simultaneously make
the encoder joint distribution p

epS, T q and decoder joint distribution p
dpS, T q match the oracle joint

distribution ppS, T q. Further, as seen in Eqn. (7), the discriminators for p
epS, T q and p

dpS, T q are
shared together. Such sharing allows the model to borrow discriminative features from both sides,
and augments the synthetic data pairs (both pS, T̃ q and pS̃, T q) for the discriminator. Presumably, this
can facilitate discriminator training especially when source-target correspondence is difficult to learn.

We believe this approach would also improve the generation diversity. To understand this, notice that
we are maximizing a surrogate to IpdpS, T q, which can be written as

IpdpS, T q “ HpT q ´ HpT |Sq. (8)
When optimizing ✓, the backward model q

d
�pS|T q is fixed and HpT |Sq remains constant. Thereby

optimizing IpdpS, T q with respect to ✓ can be understood as equivalently maximizing HpT q, which
promotes the diversity of generated text.

3 Related Work

Our work is closely related to [4], where an information-promoting objective was proposed, which
directly optimize an MI-based objective between source and target pairs. Despite the great success,
the use of additional hyperparameter for the anti-likelihood renders the objective not to be the actual
MI. Additionally, the MI objective is employed only during testing (decoding) time, while the training
procedure is irrespective to such an MI objective and identical to standard maximum-likelihood
training. Compared with [4], our approach considers optimizing a principled MI variational lower
bound during training.
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Experiments
Table 1: Quantitative evaluation on the Reddit dataset. (˚ is implemented based on [4].)

Models Relevance Diversity
BLEU ROUGE Greedy Average Extreme Dist-1 Dist-2 Ent-4

seq2seq 1.85 0.9 1.845 0.591 0.342 0.040 0.153 6.807
cGAN 1.83 0.9 1.872 0.604 0.357 0.052 0.199 7.864
AIM 2.04 1.2 1.989 0.645 0.362 0.050 0.205 8.014

DAIM 1.93 1.1 1.945 0.632 0.366 0.054 0.220 8.128
MMI˚ 1.87 1.1 1.864 0.596 0.353 0.046 0.127 7.142
Human - - - - - 0.129 0.616 9.566

The forward and backward models are first pretrained via seq2seq training. During cGAN training,
we add a small portion of supervised signal, which is observed to stabilize the training [23]. For
embedding-based evaluation, we use a word2vec embedding trained on GoogleNews Corpus3,
recommended by [43]. For all the experiments, we employ a 3-layer convolutional encoder and an
LSTM decoder as in [44]. The filter size, stride and the word embedding dimension are set to 5, 2
and 300, respectively, following [45]. The hidden unit size of H0 is set to 100. We set � to be 0.1 and
the supervised-loss balancing parameter to be 0.001. All other hyperparameters are shared among
different experiments. All experiments are conducted using NVIDIA K80 GPUs.

4.2 Evaluation on the Reddit data

Source: I don’t suppose you have my missing

socks as well?

Human: You can’t sleep either, I see.

MMI: I don’t have socks, but I have no

idea what you’re talking about.

seq2seq: I have one.

cGAN: I have one, but I have a pair of

them.

AIM: I have one left handed.

DAIM: Check your pants.

Source: Why does *** make such poor cell

phones? Isn’t that against the

Japanese code?

Human: They’re a Korean company

MMI: Because they use ads.

seq2seq: I don’t know how to use it.

cGAN: Because they are more expensive.

AIM: Because they aren’t in the store.

DAIM: Because they aren’t available in

Japan.

Source: Why would he throw a lighter at you?

Human: He was passing me it.

MMI: Why wouldn’t he?

seq2seq: I don’t know.

cGAN: You don’t?

AIM: Though he didn’t use a potato.

DAIM: He didn’t even notice that.

Table 2: Sample outputs from different methods.

Quantitative evaluation We first eval-
uate our methods on the Reddit dataset
following the relevance and diversity
metrics. We truncate the vocabulary set
to be the most frequent 20,000 words.
For testing we use 2,000 randomly se-
lected samples from the test set4. The
results are summarized in Table 1. We
observe that by incorporating the adver-
sarial loss the diversity of generated re-
sponses is improved (cGAN vs. seq2seq).
The relevance under most metrics (ex-
cept for BLEU), increase by a small
amount.

Compared with cGAN, AIM and DAIM,
which have the additional mutual infor-
mation promoting objective, clearly ben-
efit from large improvements on diversity
and relevance. Table 2 demonstrates sev-
eral examples. It can be seen that AIM
and DAIM produce more informative re-
sponses, due to the fact that the MI objec-
tive explicitly rewards the responses that
are predictive to the source, and down-
weights those that are generic and dull.
Under the same hyperparameter setup, we also observe that DAIM benefits from the additional
backward model and outperforms AIM in diversity, which better approximates human responses. We
show the histogram of the length of generated responses in the Supplementary Material. Our models
were trained until convergence. cGAN, AIM and DAIM respectively consume around 1.7, 2.5 and
3.5 times the computation time compared with our seq2seq baseline.

A more reasonable metric for evaluating relevance could be a distributional discrepancy between
generated responses and ground-truth responses, rather than the single response judgment. However
that would exceed the scope of our discussion, which we leave for future study.

3
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM

4We did not use the full test set because MMI decoding is relatively slow.
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Table 3: Human evaluation results. Results of statistical significance are shown in bold.

Methods Informativeness Relevance
Method A Method B Method A Method B

MMI-AIM MMI 0.496 AIM 0.504 MMI 0.501 AIM 0.499
MMI-cGAN MMI 0.505 cGAN 0.495 MMI 0.514 cGAN 0.486
MMI-DAIM MMI 0.484 DAIM 0.516 MMI 0.503 DAIM 0.497

MMI-seq2seq MMI 0.510 seq2seq 0.490 MMI 0.518 seq2seq 0.482
seq2seq-cGAN seq2seq 0.487 cGAN 0.513 seq2seq 0.492 cGAN 0.508
seq2seq-AIM seq2seq 0.478 AIM 0.522 seq2seq 0.492 AIM 0.508

seq2seq-DAIM seq2seq 0.468 DAIM 0.532 seq2seq 0.475 DAIM 0.525
Human-DAIM Human 0.615 DAIM 0.385 Human 0.600 DAIM 0.400

Human evaluation Informativeness is not easily measurable by automated metrics, so we per-
formed a human evaluation of 600 random sampled sources using crowd-sourcing. Systems were
paired and each pair of system outputs was randomly presented to 7 judges, who ranked them
for informativeness and relevance5. The human preferences are shown in Table 3. A statistically
significant (p < 0.00001) preference for DAIM over MMI is observed with respect to informativeness,
while relevance judgments were on a par with MMI. MMI proved a strong baseline: the other two
GAN systems were (with one exception) statistically indistinguishable from MMI, which in turn
performed significantly better than seq2seq. Box charts illustrating these results can be found in the
Supplementary Material.

Table 4: Quantitative evaluation on the Twitter dataset.

Models Relevance Diversity
BLEU ROUGE Greedy Average Extreme Dist-1 Dist-2 Ent-4

seq2seq 0.64 0.62 1.669 0.54 0.34 0.020 0.084 6.427
cGAN 0.62 0.61 1.68 0.536 0.329 0.028 0.102 6.631
AIM 0.85 0.82 1.960 0.645 0.370 0.030 0.092 7.245

DAIM 0.81 0.77 1.845 0.588 0.344 0.032 0.137 7.907
MMI 0.80 0.75 1.876 0.591 0.348 0.028 0.105 7.156

4.3 Evaluation on Twitter data

We further compared our methods on the Twitter dataset. The results are shown in Table 4. We treat
all dialog history before last response for a multi-turn conversation as source sentence, and use the last
response as target to form our dataset. We employ CNN as our encoder because a CNN-based encoder
is presumably advantageous in tracking long dialog history compared with the LSTM encoder. We
truncate the vocabulary set to 20k most frequent words due to limited flash memory capacity. We
evaluate each methods on 2k testing data.

The adversarial training encourages generating more diverse sentences, at a cost of slight relevance
score decrease. We hypothesize that such a decrease we witnessed may partially be explained by the
mechanism of evaluation metrics. All the relevance metrics we employed are based on utterance-pair
discrepancy, i.e., the score assesses how close the system output is to the ground-truth response.
Under such criterion, the system output via MLE can obtain high score despite being bland, because
a most likely response has smallest total distance to all random responses. On the other hand, a more
random but less “likely” response may be downrated by the relevance score. Consequently, adding
diversity without improving correspondency may occasionally harm these relevance scores.

However the additional mutual information seems to be compensating for the relevance decline and
further improves the response diversity, especially in Dist-n and Ent-n with larger n-gram. Sampled
responses are provided in the Supplementary Material.

5Relevance relates to the degree to which judges perceived the output to be semantically tied to the previous
turn, and can be regarded as a constraint on informativeness. An affirmative response like “Sure” and “Yes” is
relevant but not very informative.
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Abstract

We study response selection for multi-
turn conversation in retrieval-based chat-
bots. Existing work either concatenates ut-
terances in context or matches a response
with a highly abstract context vector fi-
nally, which may lose relationships among
utterances or important contextual infor-
mation. We propose a sequential match-
ing network (SMN) to address both prob-
lems. SMN first matches a response with
each utterance in the context on multiple
levels of granularity, and distills important
matching information from each pair as a
vector with convolution and pooling oper-
ations. The vectors are then accumulated
in a chronological order through a recur-
rent neural network (RNN) which models
relationships among utterances. The fi-
nal matching score is calculated with the
hidden states of the RNN. An empirical
study on two public data sets shows that
SMN can significantly outperform state-
of-the-art methods for response selection
in multi-turn conversation.

1 Introduction

Conversational agents include task-oriented dia-
log systems and non-task-oriented chatbots. Dia-
log systems focus on helping people complete spe-
cific tasks in vertical domains (Young et al., 2010),
while chatbots aim to naturally and meaningfully
converse with humans on open domain topics
(Ritter et al., 2011). Existing work on building
chatbots includes generation -based methods and
retrieval-based methods. Retrieval based chatbots
enjoy the advantage of informative and fluent re-
sponses, because they select a proper response for

⇤ Corresponding Author

Context

utterance 1 Human: How are you doing?
utterance 2 ChatBot: I am going to hold a drum class in Shanghai.

Anyone wants to join? The location is near Lujiazui.
utterance 3 Human: Interesting! Do you have coaches who

can help me practice drum?
utterance 4 ChatBot: Of course.
utterance 5 Human: Can I have a free first lesson?

Response Candidates

response 1 Sure. Have you ever played drum before? X
response 2 What lessons do you want? 7

Table 1: An example of multi-turn conversation

the current conversation from a repository with re-
sponse selection algorithms. While most existing
work on retrieval-based chatbots studies response
selection for single-turn conversation (Wang et al.,
2013) which only considers the last input message,
we consider the problem in a multi-turn scenario.
In a chatbot, multi-turn response selection takes
a message and utterances in its previous turns as
input and selects a response that is natural and rel-
evant to the whole context.

The key to response selection lies in input-
response matching. Different from single-turn
conversation, multi-turn conversation requires
matching between a response and a conversation
context in which one needs to consider not only
the matching between the response and the input
message but also matching between responses and
utterances in previous turns. The challenges of the
task include (1) how to identify important infor-
mation (words, phrases, and sentences) in context,
which is crucial to selecting a proper response and
leveraging relevant information in matching; and
(2) how to model relationships among the utter-
ances in the context. Table 1 illustrates the chal-
lenges with an example. First, “hold a drum class”
and “drum” in context are very important. With-
out them, one may find responses relevant to the
message (i.e., the fifth utterance of the context)
but nonsense in the context (e.g., “what lessons
do you want?”). Second, the message highly de-
pends on the second utterance in the context, and
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Figure 1: Architecture of SMN

2016; Serban et al., 2016). Our work is a retrieval-
based method, in which we study context-based
response selection.

Early studies of retrieval-based chatbots focus
on response selection for single-turn conversation
(Wang et al., 2013; Ji et al., 2014; Wang et al.,
2015; Wu et al., 2016b). Recently, researchers
have begun to pay attention to multi-turn conver-
sation. For example, Lowe et al. (2015) match a
response with the literal concatenation of context
utterances. Yan et al. (2016) concatenate context
utterances with the input message as reformulated
queries and perform matching with a deep neural
network architecture. Zhou et al. (2016) improve
multi-turn response selection with a multi-view
model including an utterance view and a word
view. Our model is different in that it matches a
response with each utterance at first and accumu-
lates matching information instead of sentences by
a GRU, thus useful information for matching can
be sufficiently retained.

3 Sequential Matching Network

3.1 Problem Formalization

Suppose that we have a data set D =
{(yi, si, ri)}Ni=1, where si = {ui,1, . . . , ui,ni} rep-
resents a conversation context with {ui,k}ni

k=1 as
utterances. ri is a response candidate and yi 2
{0, 1} denotes a label. yi = 1 means ri is a proper
response for si, otherwise yi = 0. Our goal is to
learn a matching model g(·, ·) with D. For any
context-response pair (s, r), g(s, r) measures the
matching degree between s and r.

3.2 Model Overview

We propose a sequential matching network (SMN)
to model g(·, ·). Figure 1 gives the architecture.

SMN first decomposes context-response match-
ing into several utterance-response pair matching
and then all pairs matching are accumulated as a
context based matching through a recurrent neu-
ral network. SMN consists of three layers. The
first layer matches a response candidate with each
utterance in the context on a word level and a
segment level, and important matching informa-
tion from the two levels is distilled by convolu-
tion, pooling and encoded in a matching vector.
The matching vectors are then fed into the sec-
ond layer where they are accumulated in the hid-
den states of a recurrent neural network with GRU
following the chronological order of the utterances
in the context. The third layer calculates the final
matching score with the hidden states of the sec-
ond layer.

SMN enjoys several advantages over existing
models. First, a response candidate can match
each utterance in the context at the very beginning,
thus matching information in every utterance-
response pair can be sufficiently extracted and car-
ried to the final matching score with minimal loss.
Second, information extraction from each utter-
ance is conducted on different levels of granular-
ity and under sufficient supervision from the re-
sponse, thus semantic structures that are useful for
response selection in each utterance can be well
identified and extracted. Third, matching and ut-
terance relationships are coupled rather than sepa-
rately modeled, thus utterance relationships (e.g.,
order), as a kind of knowledge, can supervise the
formation of the matching score.

By taking utterance relationships into account,
SMN extends the “2D” matching that has proven
effective in text pair matching for single-turn re-
sponse selection to sequential “2D” matching for



L?

• Last: only use the last hidden state


• Static: static weights for hidden states 


• Dynamic: dynamic weights for hidden states



Motivations

• Existing models: they first represent the whole context as 
a vector and then match the context vector with a 
response vector. 


• Their approach: SMN matches a response with each 
utterance in the context at the beginning and encodes 
important information in each pair into a matching vector. 
The matching vectors are then accumulated in the 
utterances’ temporal order to model their relationships.



Experiments
Ubuntu Corpus Douban Conversation Corpus

R2@1 R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5
TF-IDF 0.659 0.410 0.545 0.708 0.331 0.359 0.180 0.096 0.172 0.405
RNN 0.768 0.403 0.547 0.819 0.390 0.422 0.208 0.118 0.223 0.589
CNN 0.848 0.549 0.684 0.896 0.417 0.440 0.226 0.121 0.252 0.647
LSTM 0.901 0.638 0.784 0.949 0.485 0.527 0.320 0.187 0.343 0.720
BiLSTM 0.895 0.630 0.780 0.944 0.479 0.514 0.313 0.184 0.330 0.716
Multi-View 0.908 0.662 0.801 0.951 0.505 0.543 0.342 0.202 0.350 0.729
DL2R 0.899 0.626 0.783 0.944 0.488 0.527 0.330 0.193 0.342 0.705
MV-LSTM 0.906 0.653 0.804 0.946 0.498 0.538 0.348 0.202 0.351 0.710
Match-LSTM 0.904 0.653 0.799 0.944 0.500 0.537 0.345 0.202 0.348 0.720
Attentive-LSTM 0.903 0.633 0.789 0.943 0.495 0.523 0.331 0.192 0.328 0.718
Multi-Channel 0.904 0.656 0.809 0.942 0.506 0.543 0.349 0.203 0.351 0.709
Multi-Channelexp 0.714 0.368 0.497 0.745 0.476 0.515 0.317 0.179 0.335 0.691
SMNlast 0.923 0.723 0.842 0.956 0.526 0.571 0.393 0.236 0.387 0.729
SMNstatic 0.927 0.725 0.838 0.962 0.523 0.572 0.387 0.228 0.387 0.734
SMNdynamic 0.926 0.726 0.847 0.961 0.529 0.569 0.397 0.233 0.396 0.724

Table 3: Evaluation results on the two data sets. Numbers in bold mean that the improvement is statisti-
cally significant compared with the best baseline.

5.4 Parameter Tuning

For baseline models, if their results are available in
existing literature (e.g., those on the Ubuntu cor-
pus), we just copied the numbers, otherwise we
implemented the models following the settings in
the literatures. All models were implemented us-
ing Theano (Theano Development Team, 2016).
Word embeddings were initialized by the results
of word2vec (Mikolov et al., 2013) which ran on
the training data, and the dimensionality of word
vectors is 200. For Multi-Channel and layer one of
our model, we set the dimensionality of the hidden
states of GRU as 200. We tuned the window size
of convolution and pooling in {(2, 2), (3, 3)(4, 4)}
and chose (3, 3) finally. The number of feature
maps is 8. In layer two, we set the dimensionality
of matching vectors and the hidden states of GRU
as 50. The parameters were updated by stochastic
gradient descent with Adam algorithm (Kingma
and Ba, 2014) on a single Tesla K80 GPU. The
initial learning rate is 0.001, and the parameters
of Adam, �1 and �2 are 0.9 and 0.999 respec-
tively. We employed early-stopping as a regu-
larization strategy. Models were trained in mini-
batches with a batch size of 200, and the maximum
utterance length is 50. We set the maximum con-
text length (i.e., number of utterances) as 10, be-
cause the performance of models does not improve
on contexts longer than 10 (details are shown in
the Section 5.6). We padded zeros if the number
of utterances in a context is less than 10, otherwise
we kept the last 10 utterances.

5.5 Evaluation Results

Table 3 shows the evaluation results on the two
data sets. Our models outperform baselines

greatly in terms of all metrics on both data sets,
with the improvements being statistically signifi-
cant (t-test with p-value  0.01, except R10@5 on
Douban Corpus). Even the state-of-the-art single-
turn matching models perform much worse than
our models. The results demonstrate that one
cannot neglect utterance relationships and simply
perform multi-turn response selection by concate-
nating utterances together. Our models achieve
significant improvements over Multi-View, which
justified our “matching first” strategy. DL2R is
worse than our models, indicating that utterance
reformulation with heuristic rules is not a good
method for utilizing context information. Rn@ks
are low on the Douban Corpus as there are multi-
ple correct candidates for a context (e.g., if there
are 3 correct responses, then the maximum R10@1
is 0.33). SMNdynamic is only slightly better than
SMNstatic and SMNlast. The reason might be
that the GRU can select useful signals from the
matching sequence and accumulate them in the fi-
nal state with its gate mechanism, thus the efficacy
of an attention mechanism is not obvious for the
task at hand.

5.6 Further Analysis

Visualization: we visualize the similarity matri-
ces and the gates of GRU in layer two using an
example from the Ubuntu corpus to further clarify
how our model identifies important information in
the context and how it selects important matching
vectors with the gate mechanism of GRU as de-
scribed in Section 3.3 and Section 3.4. The exam-
ple is {u1: how can unzip many rar ( number

for example ) files at once; u2: sure you can do
that in bash; u3: okay how? u4: are the files all

Ubuntu Corpus Douban Conversation Corpus

R2@1 R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5
ReplaceM 0.905 0.661 0.799 0.950 0.503 0.541 0.343 0.201 0.364 0.729
ReplaceA 0.918 0.716 0.832 0.954 0.522 0.565 0.376 0.220 0.385 0.727
Only M1 0.919 0.704 0.832 0.955 0.518 0.562 0.370 0.228 0.371 0.737
Only M2 0.921 0.715 0.836 0.956 0.521 0.565 0.382 0.232 0.380 0.734
SMNlast 0.923 0.723 0.842 0.956 0.526 0.571 0.393 0.236 0.387 0.729

Table 4: Evaluation results of model ablation.

(a) M1 of u1 and r (b) M1 of u3 and r (c) Update gate
Figure 2: Model visualization. Darker areas mean larger value.

in the same directory? u5: yes they all are; r:
then the command glebihan should extract them
all from/to that directory}. It is from the test set
and our model successfully ranked the correct re-
sponse to the top position. Due to space limita-
tion, we only visualized M1, M2 and the update
gate (i.e. z) in Figure 2. We can see that in u1

important words including “unzip”, “rar”, “files”
are recognized and carried to matching by “com-
mand”, “extract”, and “directory” in r, while u3

is almost useless and thus little information is ex-
tracted from it. u1 is crucial to response selection
and nearly all information from u1 and r flows to
the hidden state of GRU, while other utterances
are less informative and the corresponding gates
are almost “closed” to keep the information from
u1 and r until the final state.

Model ablation: we investigate the effect of
different parts of SMN by removing them one by
one from SMNlast, shown in Table 4. First, replac-
ing the multi-channel “2D” matching with a neural
tensor network (NTN) (Socher et al., 2013) (de-
noted as ReplaceM ) makes the performance drop
dramatically. This is because NTN only matches a
pair by an utterance vector and a response vector
and loses important information in the pair. To-
gether with the visualization, we can conclude that
“2D” matching plays a key role in the “matching
first” strategy as it captures the important match-
ing information in each pair with minimal loss.
Second, the performance drops slightly when re-
placing the GRU for matching accumulation with
a multi-layer perceptron (denoted as ReplaceA).
This indicates that utterance relationships are use-
ful. Finally, we left only one channel in matching

and found that M2 is a little more powerful than
M1 and we achieve the best results with both of
them (except on R10@5 on the Douban Corpus).

Performance across context length: we study
how our model (SMNlast) performs across the
length of contexts. Figure 3 shows the compar-
ison on MAP in different length intervals on the
Douban corpus. Our model consistently performs
better than the baselines, and when contexts be-
come longer, the gap becomes larger. The re-
sults demonstrate that our model can well capture
the dependencies, especially long dependencies,
among utterances in contexts.

Figure 3: Comparison across context length
Maximum context length: we investigate the

influence of maximum context length for SMN.
Figure 4 shows the performance of SMN on
Ubuntu Corpus and Douban Corpus with respect
to maximum context length. From Figure 4, we
find that performance improves significantly when
the maximum context length is lower than 5, and
becomes stable after the context length reaches 10.
This indicates that context information is impor-
tant for multi-turn response selection, and we can
set the maximum context length as 10 to balance
effectiveness and efficiency.

Error analysis: although SMN outperforms
baseline methods on the two data sets, there are


