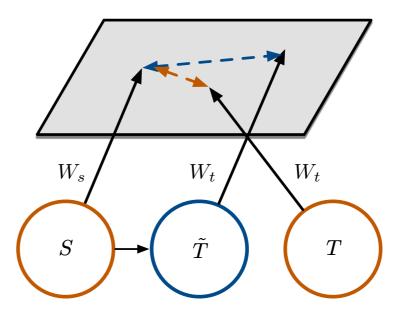
#### **Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization**

Yizhe Zhang Michel Galley Jianfeng Gao Zhe Gan Xiujun Li Chris Brockett Bill Dolan Microsoft Research, Redmond, WA, USA {yizzhang,mgalley,jfgao,zhgan,xiul,chrisbkt,billdol}@microsoft.com

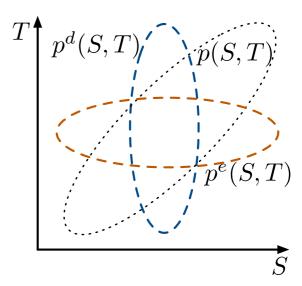

#### NIPS18

- The standard MLE average out the responses in the training data. (safe response problem)
- The problem is in fact twofold:
  - Diversity
  - Informativeness

- Diverse but uninformative
  - I dont know, I haven't a clue, I couldn't tell you
- Informative but not diverse
  - "I like music" but never "I like Jazz"

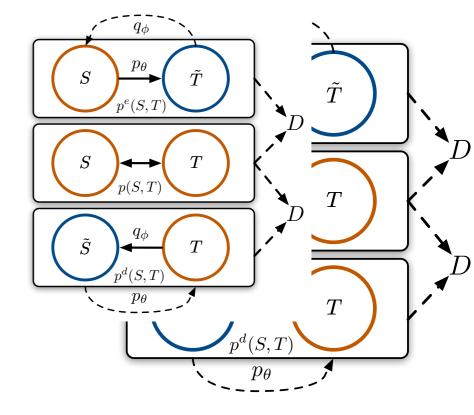
- To strike a right balance between informativeness and diversity.
- MMI attacked informativeness
- GAN tried, however, was explicitly not for either informativeness or diversity

- Adversarial Information Maximization
  - GAN for diversity
  - Variational information Maximization Objective (VIMO) for informativeness




ļ

$$\mathcal{L}_{\text{GAN}}(\theta,\psi) = -\mathbb{E}_{T,\tilde{T},S} \Big[ f\Big( D_{\psi}(T,S) - D_{\psi}(\tilde{T},S) \Big) \Big]$$


# VIMO

$$I_{p^{e}}(S,T) \triangleq \mathbb{E}_{p^{e}(S,T)} \log \frac{p^{e}(S,T)}{p(S)p^{e}(T)}$$
  
=  $H(S) + \mathbb{E}_{p^{e}(T)}D_{KL}(p^{e}(S|T), q_{\phi}(S|T)) + \mathbb{E}_{p^{e}(S,T)} \log q_{\phi}(S|T)$   
 $\geq \mathbb{E}_{p(S)}\mathbb{E}_{p_{\theta}(T|S)} \log q_{\phi}(S|T) \triangleq \mathcal{L}_{\mathrm{MI}}(\theta,\phi),$ 



#### Dual Learn

$$\begin{split} & \min_{\psi} \max_{\theta,\phi} \mathcal{L}_{\text{DAIM}} \\ &= -\mathbb{E}_{(T,\tilde{T},S)\sim p_{\theta}^{e}} f(D_{\psi}(S,T) - D_{\psi}(S,\tilde{T})) \\ &- \mathbb{E}_{(T,\tilde{S},S)\sim p_{\phi}^{d}} f(D_{\psi}(S,T) - D_{\psi}(\tilde{S},T)) \\ &+ \lambda \cdot \mathbb{E}_{p(S)} \mathbb{E}_{p_{\theta}(T|S)} \log q_{\phi}(S|T) \\ &+ \lambda \cdot \mathbb{E}_{p(T)} \mathbb{E}_{q_{\phi}(S|T)} \log p_{\theta}(T|S) \,, \end{split}$$

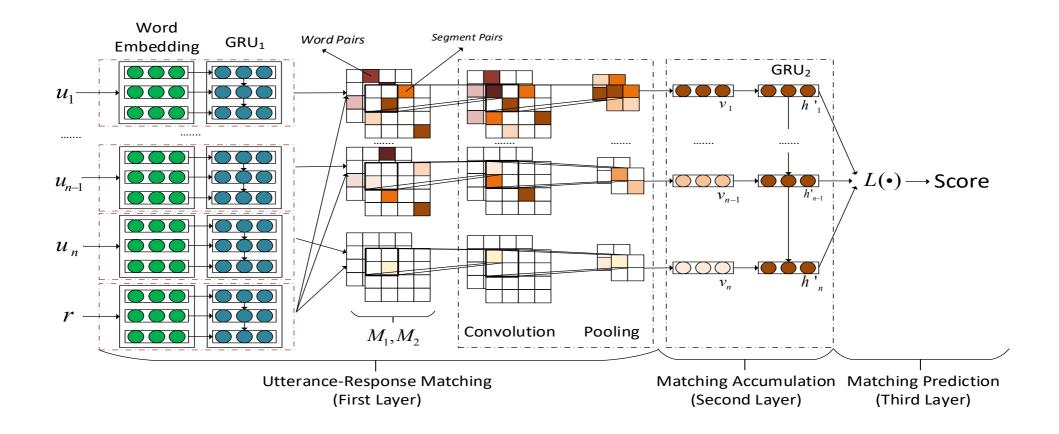


### Experiments

| Models  |      |       | Diversity |         |         |        |        |       |
|---------|------|-------|-----------|---------|---------|--------|--------|-------|
|         | BLEU | ROUGE | Greedy    | Average | Extreme | Dist-1 | Dist-2 | Ent-4 |
| seq2seq | 1.85 | 0.9   | 1.845     | 0.591   | 0.342   | 0.040  | 0.153  | 6.807 |
| cGAN    | 1.83 | 0.9   | 1.872     | 0.604   | 0.357   | 0.052  | 0.199  | 7.864 |
| AIM     | 2.04 | 1.2   | 1.989     | 0.645   | 0.362   | 0.050  | 0.205  | 8.014 |
| DAIM    | 1.93 | 1.1   | 1.945     | 0.632   | 0.366   | 0.054  | 0.220  | 8.128 |
| MMI*    | 1.87 | 1.1   | 1.864     | 0.596   | 0.353   | 0.046  | 0.127  | 7.142 |
| Human   | -    | -     | -         | -       | -       | 0.129  | 0.616  | 9.566 |

Table 1: Quantitative evaluation on the Reddit dataset. (\* is implemented based on [4].)

Table 3: Human evaluation results. Results of statistical significance are shown in bold.


| Methods             |          | Informa | ativeness |       | Relevance |       |          |       |  |  |
|---------------------|----------|---------|-----------|-------|-----------|-------|----------|-------|--|--|
| Wiethous            | Method A |         | Method B  |       | Method A  |       | Method B |       |  |  |
| MMI- <u>AIM</u>     | MMI      | 0.496   | AIM       | 0.504 | MMI       | 0.501 | AIM      | 0.499 |  |  |
| MMI-cGAN            | MMI      | 0.505   | cGAN      | 0.495 | MMI       | 0.514 | cGAN     | 0.486 |  |  |
| MMI- <u>DAIM</u>    | MMI      | 0.484   | DAIM      | 0.516 | MMI       | 0.503 | DAIM     | 0.497 |  |  |
| MMI-seq2seq         | MMI      | 0.510   | seq2seq   | 0.490 | MMI       | 0.518 | seq2seq  | 0.482 |  |  |
| seq2seq-cGAN        | seq2seq  | 0.487   | cGAN      | 0.513 | seq2seq   | 0.492 | cGAN     | 0.508 |  |  |
| seq2seq- <u>AIM</u> | seq2seq  | 0.478   | AIM       | 0.522 | seq2seq   | 0.492 | AIM      | 0.508 |  |  |
| seq2seq-DAIM        | seq2seq  | 0.468   | DAIM      | 0.532 | seq2seq   | 0.475 | DAIM     | 0.525 |  |  |
| Human-DAIM          | Human    | 0.615   | DAIM      | 0.385 | Human     | 0.600 | DAIM     | 0.400 |  |  |

#### Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-Based Chatbots

Yu Wu<sup>†</sup>, Wei Wu<sup>‡</sup>, Chen Xing<sup>◊</sup>, Zhoujun Li<sup>†</sup>\*, Ming Zhou<sup>‡</sup>
<sup>†</sup>State Key Lab of Software Development Environment, Beihang University, Beijing, China
<sup>◊</sup>College of Computer and Control Engineering, Nankai University, Tianjin, China
<sup>‡</sup> Microsoft Research, Beijing, China
{wuyu,lizj}@buaa.edu.cn {wuwei,v-chxing,mingzhou}@microsoft.com

#### • EMNLP17

### Model



## **L**?

- Last: only use the last hidden state
- Static: static weights for hidden states
- Dynamic: dynamic weights for hidden states

- Existing models: they first represent the whole context as a vector and then match the context vector with a response vector.
- Their approach: SMN matches a response with each utterance in the context at the beginning and encodes important information in each pair into a matching vector. The matching vectors are then accumulated in the utterances' temporal order to model their relationships.

#### Experiments

|                              | Ubuntu Corpus |                           |            |                    | Douban Conversation Corpus |       |       |                    |            |                    |
|------------------------------|---------------|---------------------------|------------|--------------------|----------------------------|-------|-------|--------------------|------------|--------------------|
|                              | $R_2@1$       | <b>R</b> <sub>10</sub> @1 | $R_{10}@2$ | R <sub>10</sub> @5 | MAP                        | MRR   | P@1   | R <sub>10</sub> @1 | $R_{10}@2$ | R <sub>10</sub> @5 |
| TF-IDF                       | 0.659         | 0.410                     | 0.545      | 0.708              | 0.331                      | 0.359 | 0.180 | 0.096              | 0.172      | 0.405              |
| RNN                          | 0.768         | 0.403                     | 0.547      | 0.819              | 0.390                      | 0.422 | 0.208 | 0.118              | 0.223      | 0.589              |
| CNN                          | 0.848         | 0.549                     | 0.684      | 0.896              | 0.417                      | 0.440 | 0.226 | 0.121              | 0.252      | 0.647              |
| LSTM                         | 0.901         | 0.638                     | 0.784      | 0.949              | 0.485                      | 0.527 | 0.320 | 0.187              | 0.343      | 0.720              |
| BiLSTM                       | 0.895         | 0.630                     | 0.780      | 0.944              | 0.479                      | 0.514 | 0.313 | 0.184              | 0.330      | 0.716              |
| Multi-View                   | 0.908         | 0.662                     | 0.801      | 0.951              | 0.505                      | 0.543 | 0.342 | 0.202              | 0.350      | 0.729              |
| DL2R                         | 0.899         | 0.626                     | 0.783      | 0.944              | 0.488                      | 0.527 | 0.330 | 0.193              | 0.342      | 0.705              |
| MV-LSTM                      | 0.906         | 0.653                     | 0.804      | 0.946              | 0.498                      | 0.538 | 0.348 | 0.202              | 0.351      | 0.710              |
| Match-LSTM                   | 0.904         | 0.653                     | 0.799      | 0.944              | 0.500                      | 0.537 | 0.345 | 0.202              | 0.348      | 0.720              |
| Attentive-LSTM               | 0.903         | 0.633                     | 0.789      | 0.943              | 0.495                      | 0.523 | 0.331 | 0.192              | 0.328      | 0.718              |
| Multi-Channel                | 0.904         | 0.656                     | 0.809      | 0.942              | 0.506                      | 0.543 | 0.349 | 0.203              | 0.351      | 0.709              |
| Multi-Channel <sub>exp</sub> | 0.714         | 0.368                     | 0.497      | 0.745              | 0.476                      | 0.515 | 0.317 | 0.179              | 0.335      | 0.691              |
| SMN <sub>last</sub>          | 0.923         | 0.723                     | 0.842      | 0.956              | 0.526                      | 0.571 | 0.393 | 0.236              | 0.387      | 0.729              |
| $SMN_{static}$               | 0.927         | 0.725                     | 0.838      | 0.962              | 0.523                      | 0.572 | 0.387 | 0.228              | 0.387      | 0.734              |
| $\mathrm{SMN}_{dynamic}$     | 0.926         | 0.726                     | 0.847      | 0.961              | 0.529                      | 0.569 | 0.397 | 0.233              | 0.396      | 0.724              |

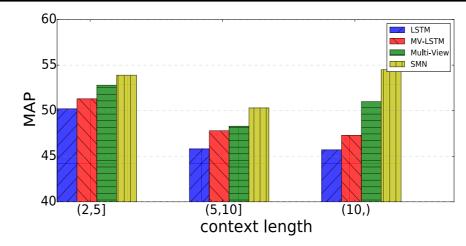



Figure 3: Comparison across context length