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Abstract
Open-domain human-computer conversation has attracted much attention in the field of NLP. Contrary

to rule- or template-based domain-specific dialog systems, open-domain conversation usually requires data-
driven approaches, which can be roughly divided into two categories: retrieval-based and generation-based
systems. Retrieval systems search a user-issued utterance (called a query) in a large database, and return a reply
that best matches the query. Generative approaches, typically based on recurrent neural networks (RNNs), can
synthesize new replies, but they suffer from the problem of generating short, meaningless utterances. In
this paper, we propose a novel ensemble of retrieval-based and generation-based dialog systems in the open
domain. In our approach, the retrieved candidate, in addition to the original query, is fed to an RNN-based
reply generator, so that the neural model is aware of more information. The generated reply is then fed back
as a new candidate for post-reranking. Experimental results show that such ensemble outperforms each single
part of it by a large margin.

1 Introduction
Automatic dialog/conversation systems have served humans for a long time in various fields, ranging from
train routing [2] to museum guiding [4]. In the above scenarios, the dialogs are domain-specific, and a typ-
ical approach to such in-domain systems is by human engineering, for example, using manually constructed
ontologies [23], natural language templates [20], and even predefined dialog states [25].

Recently, researchers have paid increasing attention to open-domain, chatbot-style human-computer con-
versation, because of its important commercial applications, and because it tackles the real challenges of natural
language understanding and generation [6, 16, 18]. For open-domain dialogs, rules and temples would proba-
bly fail as we can hardly handle the great diversity of dialog topics and natural language sentences. With the
increasing number of human-human conversation utterances available on the Internet, previous studies have
developed data-oriented approaches in the open domain, which can be roughly categorized into two groups:
retrieval systems and generative systems.

When a user issues an utterance (called a query), retrieval systems search for a most similar query in a
massive database (which consists of large numbers of query-reply pairs), and respond to the user with the
corresponding reply [6,7]. Through information retrieval, however, we cannot obtain new utterances, that is, all
replies have to appear in the database. Also, the ranking of candidate replies is usually judged by surface forms
(e.g., word overlaps, tf·idf features) and hardly addresses the real semantics of natural languages.

Generative dialog systems, on the other hand, can synthesize a new sentence as the reply by language mod-
els [16, 18, 19]. Typically, a recurrent neural network (RNN) captures the query’s semantics with one or a few
distributed, real-valued vectors (also known as embeddings); another RNN decodes the query embeddings to a
reply. Deep neural networks allow complicated interaction by multiple non-linear transformations; RNNs are
further suitable for modeling time-series data (e.g., a sequence of words) especially when enhanced with long
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Figure 1: The overall architecture of our model ensemble. We combine retrieval and generative dialog systems
by 1� enhancing the generator with the retrieved candidate and by 2� post-reranking of both retrieved and
generated candidates.

short term memory (LSTM) or gated recurrent units (GRUs). Despite these, RNN also has its own weakness
when applied to dialog systems: the generated sentence tends to be short, universal, and meaningless, for exam-
ple, “I don’t know” [8] or “something” [16]. This is probably because chatbot-like dialogs are highly diversified
and a query may not convey sufficient information for the reply. Even though such universal utterances may be
suited in certain dialog context, they make users feel boring and lose interest, and thus are not desirable in real
applications.

In this paper, we are curious if we can combine the above two streams of approaches for open-domain
conversation. To this end, we propose an ensemble of retrieval and generative dialog systems. Given a user-
issued query, we first obtain a candidate reply by information retrieval from a large database. The query,
along with the candidate reply, is then fed to an utterance generator based on the “bi-sequence to sequence”
(biseq2seq) model [30]. Such sequence generator takes into consideration the information contained in not
only the query but also the retrieved reply; hence, it alleviates the low-substance problem and can synthesize
replies that are more meaningful. After that we use the scorer in the retrieval system again for post-reranking.
This step can filter out less relevant retrieved replies or meaningless generated ones. The higher ranked candidate
(either retrieved or generated) is returned to the user as the reply.

From the above process, we see that the retrieval and generative systems are integrated by two mechanisms:
(1) The retrieved candidate is fed to the sequence generator to mitigate the “low-substance” problem; (2) The
post-reranker can make better use of both the retrieved candidate and the generated utterance. In this sense, we
call our overall approach an ensemble in this paper. To the best of our knowledge, we are the first to combine
retrieval and generative models for open-domain conversation.

Experimental results show that our ensemble model consistently outperforms each single component in
terms of several subjective and objective metrics, and that both retrieval and generative methods contribute an
important portion to the overall approach. This also verifies the rationale for building model ensembles for
dialog systems.

2 The Proposed Model Ensemble
2.1 Overview
Figure 1 depicts the overall framework of our proposed ensemble of retrieval and generative dialog systems. It
mainly consists of the following components.

• When a user sends a query utterance q, our approach utilizes a state-of-the-practice information retrieval
system to search for a query-reply pair hq⇤, r⇤i that best matches the user-issued query q. The corre-
sponding r⇤ is retrieved as a candidate reply.

• Then a biseq2seq model takes the original query q and the retrieved candidate reply r⇤ as input,
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Figure 2: The biseq2seq model, which takes as input a query q and a retrieved candidate reply r⇤; it outputs
a new reply r+.

embeddings of the time step t and ht�1 be the previous hidden state of RNN. We have

rt = �(Wrxt + Urht�1 + br) (1)
zt = �(Wzxt + Urht�1 + bz) (2)

h̃t = tanh
�
Wxxt + Ux(rt � ht�1)

�
(3)

ht = (1� zt) � ht�1 + zt � h̃t (4)

where rt and zt are known as gates, W ’s and b’s are parameters, and “�” refers to element-wise product.
After two RNNs go through q and r⇤, respectively, we obtain two vectors capturing their meanings. We

denote them as bold letters q and r⇤, which are concatenated as [q; r⇤] and linearly transformed before being
fed to the decoder as the initial state.

During reply generation, we also use GRU-RNN, given by Equations 1–4. But at each time step, a softmax
layer outputs the probability that a word would occur in the next step, i.e.,

p(wi|ht) =
exp

�
W>

i ht

 
+ b

P
j exp

�
W>

j ht + b
 (5)

where Wi is the i-th row of the output weight matrix (corresponding to wi) and b is a bias term.
Notice that we assign different sets of parameters—indicated by three colors in Figure 2—for the two en-

coders (q and r⇤) and the decoder (r+). This treatment is because the RNNs’ semantics differ significantly from
one another (even between the two encoders).

2.4 Post-Reranking
Now that we have a retrieved candidate reply r⇤ as well as a generated one r+, we select one as the final reply
by the q-r scorer in the retrieval-based dialog system (described in previous sections and not repeated here).

Using manually engineered features, this step can eliminate either meaningless short replies that are un-
fortunately generated by biseq2seq or less relevant replies given by the retrieval system. We call this a
post-reranker in our model ensemble.

2.5 Training
We train each component separately because the retrieval part is not end-to-end learnable.
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Abstract

Open domain response generation has
achieved remarkable progress in recent
years, but sometimes yields short and un-
informative responses. We propose a new
paradigm for response generation, that is
response generation by editing, which sig-
nificantly increases the diversity and infor-
mativeness of the generation results. Our
assumption is that a plausible response
can be generated by slightly revising an
existing response prototype. The proto-
type is retrieved from a pre-defined index
and provides a good start-point for gen-
eration because it is grammatical and in-
formative. We design a response editing
model, where an edit vector is formed by
considering differences between a proto-
type context and a current context, and
then the edit vector is fed to a decoder to
revise the prototype response for the cur-
rent context. Experiment results on a large
scale dataset demonstrate that the response
editing model outperforms generative and
retrieval-based models on various aspects.

1 Introduction

In recent years, non-task oriented chatbots, fo-
cused on responding to humans intelligently on a
variety of topics, have drawn much attention from
both academia and industry. Existing approaches
can be categorized into generation-based methods
(Shang et al., 2015; Vinyals and Le, 2015; Serban
et al., 2016; Sordoni et al., 2015; Xing et al., 2017;
Serban et al., 2017; Xing et al., 2018) which gen-
erate a response from scratch, and retrieval-based
methods (Hu et al., 2014; Lowe et al., 2015; Yan
et al., 2016; Zhou et al., 2016; Wu et al., 2017)
which select a response from an existing corpus.

Context My friends and I went to some ve-
gan place for dessert yesterday.

Prototype
context

My friends and I had Tofu and
vegetables at a vegan place nearby
yesterday.

Prototype
response

Raw green vegetables are very
beneficial for your health.

Revised
response

Desserts are very bad for your
health.

Table 1: An example of context-aware prototypes
editing. Underlined words mean they do not ap-
pear in the original context, while words with
strikethrough mean they are not in the prototype
context. Words in bold represent they are modi-
fied in the revised response.

Since retrieval-based approaches are severely con-
strained by a pre-defined index, generative ap-
proaches become popular in recent years. Tradi-
tional generation-based approaches, however, do
not easily generate long, diverse and informative
responses, which is referred to as “safe response”
problem (Li et al., 2016a).

To address this issue, we propose a new
paradigm, prototype-then-edit, for response gen-
eration. Our motivations are three-folds: 1) We
observe that most of responses can be represented
as transformations of other responses, so it is un-
necessary to generate a response from scratch; 2)
Human-written responses, called “prototypes” in
this paper, are informative, diverse and grammati-
cal which do not suffer from short and generic is-
sues. Hence, generating responses by editing such
prototypes can avoid the “safe response” problem.
3) In order to adapt current context, slight revision
should be done on the prototype, in which irrel-
evant words are removed and appropriated words
are inserted.
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Figure 1: Architecture of our model.

we retrieve a context-response pair (C 0, R0) from
a pre-defined index for context C according to the
similarity of C and C 0. Here, we employ Lucene2

to construct the index and use its inline algorithm
to compute the context similarity.

Now we turn to the training phase. 8i, (Ci, Ri),
our goal is to maximize the generative probabil-
ity of Ri by selecting a prototype (C 0

i, R
0
i) 2 D.

As we already know the ground-truth response Ri,
we first retrieve thirty prototypes {(C 0

i,j , R
0
i,j)}30j=1

based on the response similarity instead of context
similarity, and then reserve prototypes whose Jac-
card similarity to Ri are in the range of [0.3, 0.7].
Here, we use Lucene to index all responses, and
retrieve the top 30 similar responses along with
their corresponding contexts for Ri. The Jaccard
similarity measures text similarity from a bag-of-
word view, that is formulated as

J(A,B) =
|A \B|
|A [B| , (1)

where A and B are two bags of words and | · |
denotes the number of elements in a collection.
Each context-response pair is processed with the
above procedure, so we obtain enormous quadru-
ples {(Ci, Ri, C 0

i,j , R
0
i,j)

Mi
j=0}Ni=1 after this step.

The motivation behind filtering out instances with
Jaccard similarity < 0.3 is that a neural editor
model performs well only if a prototype is lexi-
cally similar (Guu et al., 2017) to its ground-truth.
Besides, we hope the editor does not copy the pro-
totype so we discard instances where the prototype
and groundtruth are nearly identical (i.e. Jaccard

2https://lucenenet.apache.org/

similarity > 0.7). We do not use context similar-
ity to construct parallel data for training, because
similar contexts may correspond to totally differ-
ent responses, so-called one-to-many phenomenon
in dialogue generation, that impedes editor train-
ing due to the large lexicon gap. According to our
preliminary experiments, the editor always gener-
ates non-sense responses if training data is con-
structed by context similarity.

4.3 Context-Aware Neural Editor
A context-aware neural editor aims to revise a pro-
totype to adapt current context. Formally, given a
quadruple (C,R,C 0, R0) (we omit subscripts for
simplification), a context-aware neural editor first
forms an edit vector z using C and C 0, and then
updates parameters of the generative model by
maximizing the probability of p(R|z,R0). For
testing, we directly generate a response after get-
ting the editor vector. In the following, we will
introduce how to obtain the edit vector and learn
the generative model in details.

4.3.1 Edit Vector Generation
For an unconditional sentence editing setting (Guu
et al., 2017), an edit vector is randomly sampled
from a distribution because how to edit the sen-
tence is not constrained. In contrast, we should
take both of C and C 0 into consideration when
we revise a prototype response R0. Formally, R0

is firstly transformed to hidden vectors {hk|hk =
�!
h k�

 �
h k}

nj

k=1 through a biGRU parameterized as
Equation (2).
�!
h j = fGRU(

�!
h j�1, r

0
j);
 �
h j = fGRU(

 �
h j+1, r

0
j) (2)

where r0j is the j-th word of R0.
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Table 2: Automatic evaluation results. Numbers in bold mean that improvement from the model on that
metric is statistically significant over the baseline methods (t-test, p-value < 0.01).

Relevance Diversity Originality Fluency
Average Extrema Greedy Distinct-1 Distinct-2 Not appear Avg. Score

S2SA 0.346 0.180 0.350 0.032 0.087 0.208 1.90
S2SA-MMI 0.379 0.189 0.385 0.039 0.127 0.297 1.86
CVAE 0.360 0.183 0.363 0.062 0.178 0.745 1.71
Retrieval-default 0.288 0.130 0.309 0.098 0.549 0.000 1.95
Edit-default 0.297 0.150 0.327 0.071 0.300 0.796 1.78
Retrieval-Rerank 0.380 0.191 0.381 0.067 0.460 0.000 1.96
Edit-1-Rerank 0.367 0.185 0.371 0.077 0.296 0.794 1.79
Edit-N-Rerank 0.386 0.203 0.389 0.068 0.280 0.860 1.78

improvements on automatic metrics are not that
large but significant on statistical tests (t-test, p-
value < 0.01). Two factors are known to cause
Edit-1-Rerank worse than Retrieval-Rerank. 1)
Rerank algorithm is biased to long responses, that
poses a challenge for the editing model. 2) Despite
of better prototype responses, a context of top-1
response is always greatly different from current
context, leading to a large insertion word set and
a large deletion set, that also obstructs the revi-
sion process. In terms of diversity, our methods
drop on distinct-1 and distinct-2 in a comparison
with retrieval-based methods, because the editing
model often deletes special words pursuing for
better relevance. Retrieval-Rerank is better than
retrieval-default, indicating that it is necessary to
rerank responses by measuring context-response
similarity with a matching model.

Our methods significantly outperform genera-
tive baselines in terms of diversity since response
prototypes are diverse and informative. It demon-
strates that the prototype-then-editing paradigm is
essentially capable of addressing the safe response
problem. Edit-Rerank is better than generative
baselines on relevance but Edit-default is not, in-
dicating a good prototype selector is quite impor-
tant to our editing model. In terms of originality,
about 86% revised response do not appear in the
training set, that surpasses S2SA, S2SA-MMI and
CVAE. This is mainly because baseline methods
are more likely to generate safe responses that are
frequently appeared in the training data, while our
model tends to modify an existing response that
avoids duplication issue. In terms of fluency, re-
trieval based approaches achieve the best results,
and S2SA comes to the second place. Safe re-
sponse enjoys high score on fluency, that is why

S2SA and S2SA-MMI perform well on this met-
ric. The edit model obtains an average score of
1.79. That is an acceptable fluency score for a dia-
logue engine and most of generated responses are
grammatically correct.

5.5 Discussions
5.5.1 Editing Type Analysis
It is interesting to explore the semantic gap be-
tween prototype and revised response. We ask
annotators to conduct 4-scale rating on 500 ran-
domly sampled prototype-response pairs given by
Edit-default and Edit-N-Rerank respectively. The
4-scale is defined as: identical, paraphrase, on the
same topic and unrelated.

Figure 2: Editing Ratio. The different between
paraphrase and on the same topic is that a re-
sponse in “on the same topic” category introduces
or deletes contents to its prototype response.

Figure 2 provides the ratio of four editing types
defined above. For both of two methods, Only
2% of edits are exactly the same with the proto-
type, that means our model does not downgrade
to a copy model. Surprisingly, there are 30% re-
vised responses are unrelated to prototypes. The
key factor for this phenomenon is that the neural


