Data Selection for Supervised Dialogue Generation

Yahui Liu

Tencent AI Lab

yahui.cvrs@gmail.com

July 19, 2018

Yahui Liu (NLP Group)

Paper Reading

July 19, 2018 1 / 16

Image: A matching of the second se

Self-Paced Curriculum Learning¹ MentorNet: Regularizing Very Deep Neural Networks on Corrupted Labels²

$$\min_{\boldsymbol{\theta}, \mathbf{v} \in [0,1]^n} \mathbb{F}(\boldsymbol{\theta}, \mathbf{v}) = \frac{1}{n} \sum_{i=1}^n v_i \mathcal{L}(\mathbf{y}_i, G_{\boldsymbol{\theta}}(\mathbf{x}_i))$$
(1)

Yahui Liu (NLP Group)

¹Jiang L. et al. Self-Paced Curriculum Learning, AAAI 2015

² Jiang L. et al. MentorNet: Regularizing Very Deep Neural Networks on Corrupted Labels arXiv 2017 4 🛢 🛌 🍕 🔨 🤇

Insights

learning principle underlying the cognitive process of humans and animals, which generally start with learning easier aspects of a task, and then gradually take more complex examples into consideration.

Curriculum

determines a sequence of training samples which essentially corresponds to a list of samples ranked in ascending order of learning difficulty.

Key

find a ranking function that assigns learning priorities to training samples.

< ロ > < 同 > < 回 > < 回 >

Curriculum Learning (CL)

The curriculum is assumed to be given by an oracle beforehand, and remains fixed thereafter.

- flexible to incorporate prior knowledge from various sources,
- the curriculum is predetermined a priori and cannot be adjusted accordingly, taking into account the feedback about the learner.

Self-Paced Learning (SPL)

- dynamically generated by the learner itself,
- a concise biconvex problem, ignoring prior knowledge.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$$\min_{\boldsymbol{\theta}, \mathbf{v} \in [0,1]^n} \mathbb{F}(\boldsymbol{\theta}, \mathbf{v}) = \frac{1}{n} \sum_{i=1}^n v_i \mathcal{L}(\mathbf{y}_i, G_{\boldsymbol{\theta}}(\mathbf{x}_i)) + \lambda \sum_{i=1}^n v_i$$
(2)

Alternative Convex Search

a block of variables are optimized while keeping the other block fixed.

- (1) updating **v** with a fixed $\boldsymbol{\theta}$, a sample whose loss is smaller than a certain threshold λ is taken as an "easy" sample;
- (2) when updating θ with a fixed \mathbf{v} , the classifier is trained only on the selected "easy" samples.

< /⊒ ► < Ξ ► <

Self-paced Curriculum Learning (SPCL)

instructor-student collaborative

$$\min_{\boldsymbol{\theta}, \mathbf{v} \in [0,1]^n} \mathbb{F}(\boldsymbol{\theta}, \mathbf{v}) = \frac{1}{n} \sum_{i=1}^n v_i \mathcal{L}(\mathbf{y}_i, G_{\boldsymbol{\theta}}(\mathbf{x}_i)) + f(\mathbf{v}; \lambda), \text{ s.t. } \mathbf{v} \in \Psi$$
(3)

Given a predetermined curriculum $\gamma(\cdot)$ on training samples $\mathbf{X} = {\mathbf{x}_i}_{i=1}^n$ and their weights variable $\mathbf{v} = [v_1, \cdots, v_n]^T$. A feasible region Ψ is called a curriculum region of γ if:

- Soundness: Ψ is a nonempty convex set;
- *Rule*: if $\gamma(\mathbf{x}_i) < \gamma(\mathbf{x}_j)$, it holds that $\int_{\Psi} v_i d\mathbf{v} > \int_{\Psi} v_j d\mathbf{v}$, where $\gamma(\mathbf{x}_i)$ calculates the expectation of v_i within Ψ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SPCL

Self-Paced Function

- (1) $f(\mathbf{v}; \lambda)$ is convex with respect to $\mathbf{v} \in [0, 1]^n$;
- (2) When all variables are fixed except for v_i , ℓ_i , v_i^* decreases with ℓ_i , and it holds that $\lim_{\ell_i \to 0} v_i^* = 1$, $\lim_{\ell_i \to \infty} v_i^* = 0$;

(3) $\|\mathbf{v}\|_1 = \sum_{i=1}^n v_i$ increases with respect to λ , and it holds that $\forall i \in [1, n], \lim_{\lambda \to 0} v_i^* = 0, \lim_{\lambda \to \infty} v_i^* = 1;$

where $\mathbf{v}^* = \arg \min_{\mathbf{v} \in [0,1]^n} \sum v_i \ell_i + f(\mathbf{v}; \lambda).$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Algorithm & Implementation

Algorithm

Algorithm 1: Self-paced Curriculum Learning.

input : Input dataset D, predetermined curriculum γ , self-paced function f and a stepsize μ output: Model parameter w

- 1 Derive the curriculum region Ψ from γ ;
- 2 Initialize \mathbf{v}^* , λ in the curriculum region;
- 3 while not converged do
- 4 | Update $\mathbf{w}^* = \arg\min_{\mathbf{w}} \mathbb{E}(\mathbf{w}, \mathbf{v}^*; \lambda, \Psi);$
- 5 Update $\mathbf{v}^* = \arg\min_{\mathbf{v}} \mathbb{E}(\mathbf{w}^*, \mathbf{v}; \lambda, \Psi);$
- 6 **if** λ *is small* **then** increase λ by the stepsize μ ;
- 7
- 8 end
- 9 return w*

Implementation

• Binary Scheme: $f(\mathbf{v}; \lambda) = -\lambda ||\mathbf{v}||_1 = -\lambda \sum_{i=1}^n v_i$

• Linear Scheme:

$$f(\mathbf{v}; \lambda) = \frac{1}{2}\lambda \sum_{i=1}^{n} (v_i^2 - 2v_i);$$

- Logarithmic Scheme: $f(\mathbf{v}; \lambda) = \sum_{i=1}^{n} \zeta v_i - \frac{\zeta^{v_i}}{\log \zeta};$
- Mixture Scheme: $f(\mathbf{v}; \lambda) = -\zeta \sum_{i=1}^{n} \log(v_i + \frac{1}{\lambda_1}\zeta).$

< □ > < □ > < □ > < □ > < □ > < □ >

Comparison

	CL	SPL	Proposed SPCL
Comparable to human learning	Instructor-driven	Student-driven	Instructor-student collaborative
Curriculum design	Prior knowledge	Learning objective	Learning objective + prior knowledge
Learning schemes	Multiple	Single	Multiple
Iterative training	Heuristic approach	Gradient-based	Gradient-based

◆□ → ◆圖 → ◆臣 → ◆臣 → □臣

Motivation

Deep models are trained on big data where labels are often noisy, the ability to overfitting noise can lead to poor performance.

3

10/16

Yahui Liu (NLP Group)

Formulation

$$\min_{\mathbf{w}\in\mathbb{R}^{d},\mathbf{v}\in[0,1]^{n\times m}}\mathbb{F}(\mathbf{w},\mathbf{v}) = \frac{1}{n}\sum_{i=1}^{n}\mathbf{v}_{i}^{T}\mathcal{L}(\mathbf{y}_{i},g_{s}(\mathbf{x}_{i},\mathbf{w})) + G(\mathbf{v};\lambda) + \theta\|\mathbf{w}\|_{2} \quad (4)$$

Bottleneck

- minimizing w when fitting v, stochastic gradient descent often takes many steps before converging;
- minimizing v when fitting w, fixed vector v may not even fit into memory.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Architecture

Yahui Liu (NLP Group)

Paper Reading

July 19, 2018 12 / 16

э

< □ > < □ > < □ > < □ > < □ >

The parameters of MentorNet and StudentNet are not learned jointly to avoid a trivial solution of producing zero weights for all examples.

Pretraining

a pretraining dataset $\mathcal{D}_{pre} = \{(\mathbf{z}_i, v_i^*)\}_i$, where \mathbf{z}_i the *i*-th input feature about loss, label and training epoch, and $v_i^* \in [0, 1]$ is a desirable weight. If explicit regularizer G is known:

$$\arg\min_{\Theta} \sum_{\mathbf{z}_i \in \mathcal{D}_{pre}} g_m(\mathbf{z}_i; \Theta) \ell_i + G(g_m(\mathbf{z}_i; \Theta); \lambda)$$
(5)

Otherwise:

$$\arg\min_{\Theta} \sum_{\mathbf{z}_i \in \mathcal{D}_{pre}} \| \mathbf{v}_i^* - g_m(\mathbf{z}_i; \Theta) \|_2^2$$
(6)

< □ > < 同 > < 三 > <

a third dataset $\mathcal{D}_{ft} = \{(\mathbf{x}_i, \mathbf{y}_i, v_i^*)\}$, v_i is a binary label indicating whether this example should be learned.

Fine-tuning

Mixture of Experts:

For each $(\mathbf{x}_i, \mathbf{y}_i)$ in \mathcal{D}_{ft} we first compute its input features \mathbf{z}_i . Denote $\mathbf{g}_k(\mathbf{z}_i) = [g_1(\mathbf{z}_i), \cdots, g_k(\mathbf{z}_i)]$ the weights obtained by k pretrained MentorNet g_1, \cdots, g_k .

$$\begin{split} & \arg\min_{\Theta, \mathbf{w}_{\mathbf{g}}} \sum_{v_i \in \mathcal{D}_{ft}} v_i^* \log(G_{\sigma}(\mathbf{w}_{\mathbf{g}}^{T} \mathbf{g}_{\mathbf{k}}(\mathbf{z}_i) + \epsilon)) \\ & + (1 - v_i^*) \log(1 - G_{\sigma}(\mathbf{w}_{\mathbf{g}}^{T} \mathbf{g}_{\mathbf{k}}(\mathbf{z}_i) + \epsilon)) \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Summerization

- Data selection/regularization is an useful tool for supervised learning models.
- Our reweighting methods only depends on prior knowledge, which can be improved in a SPCL way.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thanks!

Yahui Liu (NLP Group)

Paper Reading

July 19, 2018 16 / 16

3

メロト メポト メヨト メヨト