Adversarial Training for Textual Entailment with Knowledge-Guided Examples jcykcai

Motivations

- Datasets tend to be homogeneous.
- Models overfit to repetitive patterns, but fail to cover longtail patterns or linguistic phenomena such as negation.

Motivations

- Deep learning methods generally do NOT
 - incorporate intuitive rules such as negation
 - consider large-scale linguistic resources such as PPDB or WordNet

- How to do with Intuitive rules and linguistic resources
- Task-specific?
- Model-independent ?

Source	ho	$f_{oldsymbol{ ho}}(\mathrm{s})$	gρ			
Knowledge Base, G ^{KB}						
WordNet	hyper(x, y)					
	anto(x, y)		人			
	syno(x, y)	Replace x with y in s				
PPDB	$x \equiv y$					
SICK	c(x, y)		с			
Hand-authored, \mathbb{G}^{H}						
Domain knowledge	NEG	NEGATE(s)	人			
Neural Model, G ^{s2s}						
Training data	(s2s, <i>c</i>)	$\mathbb{G}_{c}^{s2s}(s)$	с			

Р	a person on a horse jumps over a broken down airplane		
H' : $\mathbb{G}_{c=\Box}^{s2s}$	a person is on a horse jumps over a rail, a person jumping over a plane		
H' : $\mathbb{G}_{c=\lambda}^{s2s}$	a person is riding a horse in a field with a dog in a red coat		
H' : $\mathbb{G}_{c=\#}^{s2s}$	a person is in a blue dog is in a park		
P (or H)	a dirt bike rider catches some air going off a large hill		
P' : $\mathbb{G}_{\rho=\equiv,g_{\rho}=\sqsubseteq}^{\mathrm{KB}(\mathrm{PPDB})}$	a dirt motorcycle rider catches some air going off a large hill		
P' : $\mathbb{G}_{\rho=c,g_{\rho}=\#}^{\mathrm{KB}(\mathrm{SICK})}$	a dirt bike man on yellow bike catches some air going off a large hill		
P' : $\mathbb{G}_{\rho=syno,g_{\rho}=\sqsubseteq}^{\text{KB(WordNet)}}$	a dirt bike rider catches some atmosphere going off a large hill		
$\mathbf{P'}: \mathbb{G}_{\rho=_{\mathrm{NEG},g_{\rho}=\mathcal{K}}}^{\mathrm{Hand}}$	a dirt bike rider do not catch some air going off a large hill		

Algorithm 1 Training procedure for ADVENTURE.			
1:	pretrain discriminator $\mathbb{D}(\hat{\theta})$ on X ;		
2:	pretrain generators $\mathbb{G}_{c}^{s2s}(\hat{\phi})$ on X ;		
3:	for number of training iterations do		
4:	for mini-batch $B \leftarrow X$ do		
5:	generate examples from \mathbb{G}		
6:	$Z_G \Leftarrow \mathbb{G}(B; \phi),$		
7:	balance X and Z_G s.t. $ Z_G \le \alpha X $		
8:	optimize discriminator:		
9:	$\hat{\theta} = \operatorname{argmin}_{\theta} L_{\mathbb{D}}(X + Z_G; \theta)$		
10:	optimize generator:		
11:	$\hat{\phi} = \operatorname{argmin}_{\phi} L_{\mathbb{G}^{s2s}}(\mathcal{Z}_G; L_{\mathbb{D}}; \phi)$		
12:	Update $\theta \leftarrow \hat{\theta}; \phi \leftarrow \hat{\phi}$		

Experiments

SNLI	1%	10%	50%	100%
\mathbb{D}	57.68	75.03	82.77	84.52
$\mathbb{D}_{\text{retro}}$	57.04	73.45	81.18	84.14
AdvEntuRe				
${\scriptstyle \perp} \mathbb{D} + \mathbb{G}^{s2s}$	58.35	75.66	82.91	84.68
${\scriptstyle \perp} \mathbb{D} + \mathbb{G}^{\text{rule}}$	60.45	77.11	83.51	84.40
$\llcorner \mathbb{D} + \mathbb{G}^{\text{rule}} + \mathbb{G}^{\text{s2s}}$	59.33	76.03	83.02	83.25
SciTail	1%	10%	50%	100%
SciTail	1% 56.60	10% 60.84	50% 73.24	100% 74.29
SciTail D D _{retro}	1% 56.60 59.75	10% 60.84 67.99	50% 73.24 69.05	100% 74.29 72.63
SciTail D D _{retro} AdvEntuRe	1% 56.60 59.75	10% 60.84 67.99	50% 73.24 69.05	100% 74.29 72.63
SciTail \mathbb{D} \mathbb{D}_{retro} AdvEntuRe $\sqcup \mathbb{D} + \mathbb{G}^{s^{2s}}$	1% 56.60 59.75 65.78	10% 60.84 67.99 70.77	50% 73.24 69.05 74.68	100% 74.29 72.63 76.92
SciTail \mathbb{D}_{retro} AdvEntuRe $ \square + \mathbb{G}^{s^{2s}}$ $ \square + \mathbb{G}^{rule}$	1% 56.60 59.75 65.78 61.74	10% 60.84 67.99 70.77 66.53	50% 73.24 69.05 74.68 73.99	100% 74.29 72.63 76.92 79.03

	\mathcal{R}/C	SNLI (5%)	SciTail (10%)
ule	\mathbb{D}	69.18	60.84
	+ PPDB	72.81 (+3.6%)	65.52 (+4.6%)
Ū	+ SICK	71.32 (+2.1%)	67.49 (+6.5%)
+	+ WordNet	71.54 (+2.3%)	64.67 (+3.8%)
	+ HAND	71.15 (+1.9%)	69.05 (+8.2%)
	+ all	71.31 (+2.1%)	64.16 (+3.3%)
	\mathbb{D}	69.18	60.84
$) + (r^{s2s}$	+ positive	71.21 (+2.0%)	67.49 (+6.6%)
	+ negative	71.76 (+2.6%)	68.95 (+8.1%)
	+ neutral	71.72 (+2.5%)	-
H	+ all	72.28 (+3.1%)	70.77 (+9.9%)

Learn a Lesson

- Easiest way to do a **good** but not exciting work
 - Find right problem (the **most difficult** part)
 - do trivial but **promising** ideas
 - make elaborate experiment analysis.