Paper Reading

Jun Gao

July 3, 2018

Tencent AI Lab

Flexible End-to-End Dialogue System for Knowledge Grounded Conversation [AAAI2018]

Wenya Zhu / Kaixiang Mo / Yu Zhang / Zhangbin Zhu / Xuezheng Peng / Qiang Yang

- The response of knowledge grounded conversation might contain multiple answer entities or no entity at all.
- QA systems can be applied to knowledge grounded conversation, they either have at most one entity in a response or cannot deal with out-ofvocabulary entities.
- propose a generative dialogue system GenDS that is capable of generating responses based on input message and related knowledge base (KB).
- introduce a dynamic knowledge enquirer, in order to generate an arbitrary number of entities.

Introduction

KB of user A:

Subject	predicate	object
Jay	occupation	Singer
Jay	wife	Kunning
Jay	marriage_state	married

KB of user B:

subject	predicate	object
Confession Balloon	singer	Jay
Maple Leaf	singer	Jay
Jay	wife	Kunning

Do you know Jay get married?

Yes, his wife is Kunning. Very beautiful!

I like Jay's music. Do you have any recommendation?

You can try "Confession Balloon","Maple Leaf" (((

User A

Great! I really want him to sing more songs.

User B

The inputs of the problem are:

- 1. An input message X
- 2. A knowledge base K containing all possible facts.
- 3. A list of entity types au

The output of the problem is:

• 1. A response **Y**. The response might contain arbitrary number of common and knowledge words.

The components of the GenDS system:

- 1. A candidate facts retriever first detects possible entities *E* in the input message *X*, then retrieves a set of possible facts τ_Q Q from the knowledge base *K*, based on the detected entities *E*.
- 2. A message encoder encodes the input message **X** into a set of intent vectors at each time step, denoted by **H**.
- 3. A reply decoder takes *H* and τ_Q as input and generates the final response *Y* word by word.

Retrieve facts with subjects matched with ${\pmb E}$ and objectives matched with ${\pmb E}$:

$$\tau_Q = \tau_{QS} \cup \tau_{QO}$$

Replace the entity in the message with its type.

"recommend me songs of JAY" – "recommend me songs of People"

- Common Word Generator
- Dynamic Knowledge Enquirer
 - message matching score: $r_{e_k} = DNN_2(\boldsymbol{h}_{M_T}, \boldsymbol{\beta}_{e_k})$
 - entity update score: $f_t = DNN_1(s_t, \mu_{y_{t-1}}, \mu y_{t-1})$
 - entity type update score: $u_{kt} = DNN_1(s_t, \mu_{y_{t-1}}, \mu_{e_k})$
 - The final dynamic entity score: p_e = (y_t = et) = p_{et} = r o f_t o μ_t
- Final Response Generation with the knowledge gate $z_t \in \{0,1\}$

Two tasks share the message encoder, and common word generator decoder, and are trained with maximum likelihood estimation as objective function.

- 1. the model is trained with ground truth as output(GenDS)
- 2. the output of task2 is to replace the entity in ground truth with its type(Seq2SeqAttn)

Dataset

- 1. MusicConvers
- 2. Music Question Answering

#dialogues	9993
vocabulary size for message	3256
vocabulary size for response	2976
#entities	5988
# knowledge triples	7612
# relation in KB	66

Table 1: Statistics of the MusicConvers dataset

#QA pair	30312
vocabulary size for message	12576
vocabulary size for response	13807
# entities	7176
# knowledge triples	6238
# relation in KB	25

Table 2: Statistics of the QA dataset

Message	I forgot what songs has Hu Ling sung? 忘记了, 胡灵唱过什么歌?
S2SA	still New Experience 还有全新经验
GenQA	Meet in Guangzhou, Meet in Guangzhou, Meet in Guangzhou, Meet in Guangzhou and so on 广州之约, 广州之约, 广州之约, 广州 之約等等
GenQAD	should be I am still your lover 就是我依然是你的情人
GenDS-Static	Song of Wind, Song of Wind 听风的歌,听风的歌
GenDS-Single	I am still your lover, Song of Wind 我依然是你的情人, 听风的歌

Table 6: Case Study For Knowledge Grounded Conversation. Entities are underlined, and true entities are in bold.

Message	Didn't know this singer, do you know Zhiqian Xue 没听过这个歌手哎,你知道薛之谦么
S2SA	I knew her songs 听过她的歌呀
GenQA	Animal World singing the song is that he wrote the lyrics of the day more than a few
	days 动物世界唱的歌都是他写填词日超多日 超多日
GenQAD	Heard of these two 听过这两首是听过这两首了哦
GenDS-Single	Prince Back is the song of Zhiqian Xue, all written by himself 王子归来是薛之谦的歌,都是作词。

Table 7: Case Study For Unseen Knowledge Words. Unseen Entities are underlined, and true entities are in bold.

- 1. The model can generate responses with any number of answer entities, even when these entities never appear in the training set.
- 2. Being able to deal with unseen entities, GenDS is scalable with new KB.