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Problem with standard RL

» Long term credit assignment

» Sparse reward signals



Original FeUdal Reinforcement Learning

Each action translates into levels of hierarchy within an agent:
» Simple Grid-Environment
» Actions: N,S,E,W and *; * Action lets a lower-level manager
search.
» Trained with traditional Q-Learning.



The Proposed FeUdal Networks

> The top level - Manager: set goals at a lower temporal
resolution in a latent state-space that is itself learnt;

» The lower level - Worker: operates at a higher temporal
resolution and produces primitive actions.
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Figure 1. The schematic illustration of FuN (section 3)
Consider a task-oriented dialogue problem (e.g. travel planning):
» The Manager selects the subtask(e.g. book-flight-ticket); But
this paper allows a continuous subtask space.
» The Worker takes a sequence of actions with the subtask in
control (e.g. departure time, number of tickets etc.)
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The Proposed FeUdal Networks: Manager (Forward)

Manager o goal
cr' Jyo. p— Transition
s, S/ g [policy gradient

No gradient !

B Worker

T : | k=16 << d=256
ﬂ N Ij R ‘ w,ERM }\\ action | '
m 7/)_(>>—~|z' Policy gradient
e U SR }/

P

Figure 1. The schematic illustration of FuN (section 3)

» The state x; is projected into a d-dimensional space Z and we
have its embedding vector z;;

» The manager computes a latent representation s; which is a
“higher-level” embedding of the state;

» The manager then treats s; and g; as a sequence and uses a
dilated-LSTM to output a goal vector g;:
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The Proposed FeUdal Networks: Worker (Forward)
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Figure 1. The schematic illustration of FuN (section 3)

» The worker uses a traditional RNN to compute a matrix U;
based on the state embedding z: h/V, Uy = fV™(z,, AV )

» U; can be considered a set of policies, with each row
corresponding to an action that the manager can select from.

» The manager takes the goal embeddings from the manager,
performs a no-biased linear transform: wy = ¢(3°F_, _ &)

» w; is used to weight the policies in U;: 7 = softmax(Urwy).



The Proposed FeUdal Networks (Backwards)
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Figure 1. The schematic illustration of FuN (section 3)

» The Manager and the Worker are trained independently.

> The Manager is trained to choose goals with semantic
meaning as advantageous directions in the latent space

» The Worker is given intrinsic reward for following the goals set
by the manager.



The Proposed FeUdal Networks: Manager (Backwards)
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» Compute the Manager's advantage function
AM = R, — VM(x,0), with VM (x;,0) computed using an
internal critic.

» Computes the cosine distance at a horizon “c” in the direction
of the goal and compute the gradient of the Manager as:
Vgt = AQ/IVOdcos(SH—C - Stagt(e))-

» The Manager is not trained by gradients from the Worker, but
from the advantageous directions in the state space S.



Transition Policy Gradients for the Manager

» Assume a high-level policy o; = p(st, ) that selects among
sub-policies (possibly from a continuous set), which are fixed
duration behaviours (lasting for c steps).

» Model a transition policy: 777 (s1c|s:) = p(st4c|st, 0¢), with

P(Stsc|Se, 0r) ox edeos(Stre—st.gr),

» The gradients with respect to the policy parameters:

vrlP = AMv,log p(stic|se, ).



The Proposed FeUdal Networks: Worker (Backwards)
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Figure 1. The schematic illustration of FuN (section 3)

» Similar to the traditional policy update with the use of an
intrinsic reward

AP = R, + Rl — VP(x:,0)
R,_{ = 1/C Z dcos(st - Stfi,gtff)
i=1

v = APy log m(at|xt, 0)



Experiments on ATARI game - Montezuma's revenge
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Figure 4. ATARI training curves. Epochs corresponds to a million training steps of an agent. The value is the average per episode score
of top 5 agents, according to the final score. We used two different discount factors 0.95 and 0.99.



Conclusions

» Can be readily to replace flat RL in decoding.
» How to define the goal of manager?
> Just let it be a latent variable - CVPR2018
» The subgoal of task-oriented dialogue - EMNLP2017
» Can we define a better goal with meaningful interpretations in
chichat-setting?
» Instead of using it in the decoder, can we apply HRL in the
memory construction or anywhere currently RL can be used in
text generation?



