Fast Abstractive Summarization with Reinforceselected Sentence Rewriting jcykcai

- Abstractive models suffer from
 - slow and inaccurate decoding of very long documents.
 - Redundancy (repetitions)

- First use an *extractor agent* to select salient sentences.
- Then employs an *abstractive network* to rewrite them (in parallel).
- extractor agent and abstractive network are bridged by RL techniques.

Models

Extractor Agent

Figure 1: Our extractor agent: the convolutional encoder computes representation r_j for each sentence. The RNN encoder (blue) computes context-aware representation h_j and then the RNN decoder (green) selects sentence j_t at time step t. With j_t selected, h_{j_t} will be fed into the decoder at time t + 1.

Models

- Abstractor network
- Seq2Seq with attention mechanism and copy mechanism.

Training

- Maximum Likelihood Estimate Pre-training
- RL training of Extractor Agent

MLE Pre-training

 Most of the summarization datasets are end-to-end document-summary pairs without extraction labels for each sentence.

 $j_t = \operatorname{argmax}_i(\operatorname{ROUGE-L}_{recall}(d_i, s_t))$

RL training

• Reward for extracting the sentence d_{j_t}

 $r(t+1) = \text{ROUGE-L}_{F_1}(g(d_{j_t}), s_t)$

- Terminal action
 - Terminal Reward ROUGE- $1_{F_1}([\{g(d_{j_t})\}_t], [\{s_t\}_t]);$
 - Any extraneous, unwanted extraction step receives zero award.

- Faster and better than previous state-of-the-art models.
- Interesting listeners can read the paper.

Unpaired Sentiment-to-Sentiment Translation: A Cycled Reinforcement Learning Approach jcykcai

- Most exiting studies fail in keeping the semantic content.
- A possible reason:
 - They attempts to implicitly separate the emotional information from the semantic information.
 - And it is hard?

- Change the sentiment in two steps:
 - Neutralization
 - Emotionalization

- Neutralization module
 - Extracting non-emotional semantic information by explicitly removing emotional words
- Emotionalization module
 - Adding sentiment to the output of neutralization module.

Models

MLE Pre-training

- Generate labeled data for neutralization module
 - Self attention-based sentiment classifier (SASC)
 - Words with attention weights lower than average are identified as non-emotional words

MLE Pre-training

- Emotionalization Module (Seq2Seq model)
 - Input: neutralized sentence (by SASC)
 - Target: original sentence

RL training

- Generate two sentences, one with the original sentiment and one with the opposite sentiment
- Reward the two sentence $(R_c = R_1 + R_2)$
- Propagate gradients $\nabla_{\theta} J(\theta) = \mathbb{E}[R_c \cdot \nabla_{\theta} \log(P_{N_{\theta}}(\hat{\alpha}|\boldsymbol{x}))]$

RL training

• Reward function: $R = (1 + \beta^2) \frac{2 \cdot BLEU \cdot Confid}{(\beta^2 \cdot BLEU) + Confid}$

 Confid comes form a pre-trained classier. BLEU is used to measure the content preservation performance

Automatic evaluation

Yelp	ACC	BLEU	G-score
CAAE (Shen et al., 2017)	93.22	1.17	10.44
MDAL (Fu et al., 2018)	85.65	1.64	11.85
Proposed Method	80.00	22.46	42.38
Amazon	ACC	BLEU	G-score
CAAE (Shen et al., 2017)	84.19	0.56	6.87
MDAL (Fu et al., 2018)	70.50	0.27	4.36
Proposed Method	70.37	14.06	31.45

Human evaluation

Yelp	Sentiment	Semantic	G-score
CAAE (Shen et al., 2017)	7.67	3.87	5.45
MDAL (Fu et al., 2018)	7.12	3.68	5.12
Proposed Method	6.99	5.08	5.96
Amazon	Sentiment	Semantic	G-score
Amazon CAAE (Shen et al., 2017)	Sentiment 8.61	Semantic 3.15	G-score 5.21
Amazon CAAE (Shen et al., 2017) MDAL (Fu et al., 2018)	Sentiment 8.61 7.93	Semantic 3.15 3.22	G-score 5.21 5.05

Input: I would strongly advise against using this company.

CAAE: I love this place for a great experience here. MDAL: I have been a great place was great.

Proposed Method: I would love using this company.

Input: The service was nearly non-existent and extremely rude.

CAAE: The best place in the best area in vegas.

MDAL: The food is very friendly and very good.

Proposed Method: The service was served and completely fresh.

Input: Asked for the roast beef and mushroom sub, only received roast beef.

CAAE: We had a great experience with.

MDAL: This place for a great place for a great food and best.

Proposed Method: Thanks for the beef and spring bbq.

Input: Worst cleaning job ever!

CAAE: Great food and great service!

MDAL: Great food, food!

Proposed Method: Excellent outstanding job ever!

Input: Most boring show I've ever been.

CAAE: Great place is the best place in town.

MDAL: Great place I've ever ever had.

Proposed Method: Most amazing show I've ever been.

Michael is absolutely wonderful. I would strongly advise against using this company. Horrible experience! Worst cleaning job ever! Most boring show i 've ever been. Hainan chicken was really good. I really don't understand all the negative reviews for this dentist. Smells so weird in there. The service was nearly non-existent and extremely rude.

Take-away

- Easiest way to apply RL in NLP?
 - Decompose a task to several sub-tasks (i.e. build a pipeline method).
 - Evaluate the output in the last step and propagate the reward to all preceding sub-modules.