
Paper Reading

Wei Bi

Tencent AI Lab

2018 June 21

Adversarial Feature Matching for Text Generation
RNN-based autoencoder to generate a sentence:

I Fail to generate realistic sentences from arbitrary latent
representations.

I Exposure bias by the use of RNN: error accumulates and
quality decreases quickly after the first few words generate.

GAN to generate a sentence:

I Generator: map samples from a prior distribution to synthetic
sentences that appears to be realistic.

I Discriminator: compare real and synthetic sentences.
I Two problems:

I Model collapse: produce a single observation for multiple
latent representation.

I Vanishing gradient: as the discriminator gets better, the
gradient of the generator vanishes.

This paper considers a kernel-based moment-matching scheme to
force the distribution of real and synthetic sentences to have
matched moment in the latent-feature space.

Adversarial Feature Matching for Text Generation
RNN-based autoencoder to generate a sentence:

I Fail to generate realistic sentences from arbitrary latent
representations.

I Exposure bias by the use of RNN: error accumulates and
quality decreases quickly after the first few words generate.

GAN to generate a sentence:

I Generator: map samples from a prior distribution to synthetic
sentences that appears to be realistic.

I Discriminator: compare real and synthetic sentences.
I Two problems:

I Model collapse: produce a single observation for multiple
latent representation.

I Vanishing gradient: as the discriminator gets better, the
gradient of the generator vanishes.

This paper considers a kernel-based moment-matching scheme to
force the distribution of real and synthetic sentences to have
matched moment in the latent-feature space.

Adversarial Feature Matching for Text Generation
RNN-based autoencoder to generate a sentence:

I Fail to generate realistic sentences from arbitrary latent
representations.

I Exposure bias by the use of RNN: error accumulates and
quality decreases quickly after the first few words generate.

GAN to generate a sentence:

I Generator: map samples from a prior distribution to synthetic
sentences that appears to be realistic.

I Discriminator: compare real and synthetic sentences.
I Two problems:

I Model collapse: produce a single observation for multiple
latent representation.

I Vanishing gradient: as the discriminator gets better, the
gradient of the generator vanishes.

This paper considers a kernel-based moment-matching scheme to
force the distribution of real and synthetic sentences to have
matched moment in the latent-feature space.

TextGAN

LGAN = Es∼S logD(s) + Ez∼pz log[1− D(G (z))]

LD = LGAN − λLrecon + λLMMD2

LG = LMMD2

Lrecon = ‖ẑ − z‖2

LMMD2 = ‖Ef from realφ(f)− Ef̂ from fakeφ(f̂)‖2H
(mean squared difference between two sets of samples))

MMD
MMD measures the mean squared difference between two sets of
samples X and Y over a Reproducing Kernel Hilbert Space (RKHS)
H, φ(x) ∈ H is the feature mapping, k(x , y) is the kernel function.

LMMD2 = ‖Ex∼Xφ(x)− Ey∼Yφ(y)‖2H
= Ex∼XEx ′∼X [k(x , x ′)] + Ey∼YEy ′∼Y [k(y , y ′)]

−2Ex∼XEy∼Y [k(x , y)]

I With a universal kernel like the Gaussian kernel
k(x , y) = exp(−‖x−y‖

2

2σ) with bandwidth σ, minimizing the
MMD objective will match moments of all orders.

I MMD forces the generator to produce highly diverse sentences
to match the variation of real sentences, by latent moment
matching, thus alleviating the mode-collapsing problem.

I MMD is a proper metric when the kernel is universal. If the
kernel function is universal, the MMD metric will be no worse
than the Total Variance Distance in terms of vanishing
gradients.

Experiments
I The proposed model is trained using a combination of two

datasets to investigate whether it can generate sentences that
integrate both scientific and informal writing styles.

Conclusions

I This model delivers superior performance compared to related
approaches, can produce realistic sentences.

I The learned latent representation space can “smoothly”
encode plausible sentences.

I The response generation model(Seq2seq) also suffers from the
mode collapse problem, i.e. multiple input representations will
output the same generic response sequence. If GAN is not
used, can we still apply the MMD idea to constrain the input
representation space for a better representation space?

Sequence Tutor: Conservative Fine-Tuning of Sequence
Generation Models with KL-control

This paper proposes a general method for improving the structure
and quality of sequences generated by Seq2seq.
To apply RL to sequence generation:

I Generating the next token in the sequence is treated as an
action a.

I The state of the environment consists of all of the tokens
generated so far, i.e. st = {a1, a2, . . . , at−1}

I Given action at , we would like the reward rt to combine
information about the prior policy p(at |st) as output by the
Reward RNN, as well as some domain- or task-specific
rewards rT .

DQN

Given the state of the environment at time t, st , the agent takes
an action at according to its policy π(at |st), receives a reward
r(st , at), and the environment transitions to state, st+1. The
optimal deterministic policy π∗ satisfies the Bellman optimality
equation

Q(st , at , π
∗) = r(st , at) + γEp(st+1|st ,at)[maxat+1Q(st+1, at+1;π∗)]

DQN approximates Q(s, q; θ) by a DNN:

L(θ) = Eβ[(r(s, a) + γmax
a′

Q(s ′, a′; θ−)− Q(s, a; θ))2]

I β is the exploration policy.

I θ− is the parameters of the target Q-network that is held fixed
during the gradient computation.

Sequence Tutor

I Pretrain a Seq2seq and fix it as a Reward RNN.
I Copy the pretrained Seq2seq network as the Target Q

Network and Q network for the DQN learning.
I The reward at time t: r(s, a) = log p(a|s) + rT (a, s)/c .
I The ojbective and learned policy of DQN:

L(θ) = Eβ[log p(a|s)+rT (a, s)/c+γmax
a′

Q(s ′, a′; θ−)−Q(s, a; θ))2]

πθ(a|s) = δ(a = arg maxQ(s, a; θ))

Sequence Tutor...
I DQN learns a deterministic policy, not be ideal for sequence

generation.
I The problem can be expressed as a KL control problem for a

non-Markovian system.
I They treat a trained MLE sequence model as the prior policy,

and thus the objective is to train a new policy to maximize
some rewards while keeping close to the original MLE model.

I τ = {a1, a2, . . . , at−1}: the sequence, γ(τ): the reward of the
sequence, p(τ): the prior distribution over τ given by the
trained sequence model, q(τ): the policy of the Sequence
Tutor model:

L(q) = Eq(τ)[γ(τ)/c − DKL[q(τ)||p(τ)].

I The reinforcement learning objective

L(θ) = Eπ[
∑
t

r(st , at)/c + log p(at |st)− logπθ
(at |st)]

Eπ[·]:expectation with respect to sequences sampled from π.
I Derive two algorithm to parameterize πθ.

Experiments

I Generation of Melody and Molecular
I Compare three methods for implement the Sequence tutor:

I Q-learning with the deterministic policy.
I two methods for KL-control with the non-deterministic policy.

I Compare the RL-only with no prior policy and MLE RNN.

Conclusions

I Similar methods can be applied on text generation if a
deterministic policy is applied.

