
Neural Response Generation via GAN with an Approximate
Embedding Layer*

Commonsense Knowledge Aware Conversation Generation with Graph
Attention

Jun Gao June 21, 2018 1 / 29

Neural Response Generation via GAN with an Approximate
Embedding Layer*

Jun Gao June 21, 2018 2 / 29

Introduction

”safe response” problem. This is due to the fundamental nature of
statistical models, which fit sufficiently observed examples better than
insufficiently observed ones.

This paper presents a Generative Adversarial Network(GAN) to model
single turn short-text conversation.

The proposed method introduces an approximate embedding layer to
solve the non-differentiable problem caused by the sampling-based
output decoding procedure in the Seq2Seq generative model.

Jun Gao June 21, 2018 3 / 29

Model Overview

The whole framework consists of a response generator G, a discriminator
D and an embedding approximation layer that connects the G and the D.

Jun Gao June 21, 2018 4 / 29

Model Overview

The generator adopts the Gated Recurrent Unit (GRU) based encoder
decoder architecture.

An approximate embedding layer is designed to guarantee that the
response generation procedure is continuous and differentiable,
serving as an interface for the discriminator to propagate its loss to
the generator.

The Convolutional Neural Network (CNN) based discriminator is
attached on top of the approximation layer, which aims to distinguish
the fake responses output by the approximation layer and the
corresponding human-generated references.

Jun Gao June 21, 2018 5 / 29

Pre-training the Generator by MLE

The generator estimates the probability of each word occurring in r
conditioned on qv .

p(r |q) =
K∏
t=1

p(wr ,t |qv ,wr ,1, ...,wr ,t−1)

The generator is trained by optimizing the MLE objective defined as:

1

|D|
∑

(q,r)∈D

K∑
t=1

logp(wr ,t |qv ,wr ,1, ...,wr ,t−1)

We need to pre-train the generator to guarantee the generator
produce grammatical utterances.

Jun Gao June 21, 2018 6 / 29

Pre-training the CNN-based Discriminator

Vq: word embedding vector sequence for a query q.

Vr : word embedding vector sequence for a human-produced response
r .

Vr̂ : word embedding vector sequence for a fake response r̂ .

Two CNNs with shared parameters are employed to encode Vr and Vr̂

into higher-level abstractions, respectively. In addition, a separate
CNN is used to abstract Vq.

We denote such abstraction layers in the above CNNs as Ar ,Ar̂ ,Aq.
Then we concatenate them and feed the resulting vectors to their
respective fully-connected layers.

The Discriminator D is pre-trained by maximising the following
objective function:

Dloss = logD(r |q) + log(1− D(r̂ |q))

Jun Gao June 21, 2018 7 / 29

The Approximate Embedding Layer

This approximation is based on the assumption that ideally the word
distributions should be trained to reasonably approach the one-hot
representation of the discrete words.

The overall word embedding approximation is computed as:

ê =
V∑
j=1

ej · Softmax(Wp(hi + zi) + bp)j

Where Wp and bp are the weight and bias parameters of the word
projection layer, respectively, and hi is the hidden representation of
word wi .

Jun Gao June 21, 2018 8 / 29

Adversial Training of the Generator

Firstly, when training G , we replace the objective function with the
l2-loss between Ar and Ar̂ .

Secondly, we freeze the parameters of the encoder network and the
projection layer of the decoder network, but only tune the parameters
of decoder’s hidden layers.

The gradient of the generator can be computed as:

∇gD,G(θG) =
∂Gloss

∂Vr̂

∂Vr̂

∂θG
=
∂Gloss

∂Vr̂

∂Vr̂

∂G

∂G

∂θG

Where θG denotes the active parameters of the generator G ,
Gloss = ||Ar − Ar̂ || and gD,G (∗) stands for the inference step of the
entire GAN.

Jun Gao June 21, 2018 9 / 29

Automatic Evaluation

Jun Gao June 21, 2018 10 / 29

Human Evaluation Results

Jun Gao June 21, 2018 11 / 29

The Inuence of the Discriminator to Adversarial Training

Jun Gao June 21, 2018 12 / 29

Example responses

Jun Gao June 21, 2018 13 / 29

Conclusion

An approximation embedding layer is introduced to force the entire
network differentiable, which signicantly overcomes the drawbacks
found in the previous RL-based attempts.

The superiority of the proposed method has been demonstrated by
empirical experiments based on both automatic evaluation metrics
and human judgements.

Jun Gao June 21, 2018 14 / 29

Commonsense Knowledge Aware Conversation Generation with Graph
Attention

Jun Gao June 21, 2018 15 / 29

Introduction

Some models are highly dependent on the quality of unstructured
texts or limited by the small-scale, domain-specific knowledge.

They usually make use of knowledge triples (entities) separately and
independently, instead of treating knowledge triples as a whole in a
graph.

To address the two issues, this paper propose a commonsense
knowledge aware conversational model (CCM) to facilitate language
understanding and generation in open-domain conversational.
systems.

Jun Gao June 21, 2018 16 / 29

Task Definition and Overview

Given a post X = {x1, x2, ..., xn} and some commonsense knowledge
graphs G = {g1, g2, ..., gHG

}, the goal is to generate a proper
response Y = {y1, y2, ...ym}.
The graphs are retrieved from a knowledge base using the words in a
post as queries, and each word coresponds to a graph in G .

Each graph consists of a set of triple gi = {τ1, τ2, ..., τNgi
} and each

triple (head entity, relation, tail entity) is denoted as τ = (h, r , t)

A knowledge triple τ is represented by
k = (h, r, t) = MLP(TransE (h, r , t)).

Jun Gao June 21, 2018 17 / 29

Model Overview

The knowledge interpreter takes as input a post X = x1x2...xn and
retrieved knowledge graphs G = {g1, g2, ..., gn} to obtain knowledge
aware representations at each word position, by concatenating a word
vector and its corresponding knowledge graph vector.

A knowledge graph vector represents a knowledge graph for the
corresponding word in X through a static graph attention mechanism.

The knowledge aware generator generates a response Y = y1y2...ym
with our dynamic graph attention mechanism. At each decoding
position, it attentively reads the retrieved graphs and the entities in
each graph, and then generates a generic word in the vocabulary or
an entity in the knowledge graphs.

Jun Gao June 21, 2018 18 / 29

Model Overview

Jun Gao June 21, 2018 19 / 29

Knowledge Interpreter

Jun Gao June 21, 2018 20 / 29

Static Graph Attention

The static graph attention mechanism takes as input the knowledge
triple vectors K(gi) = {k1, k2, ..., kNgi} in retrieved knowledge graph
gi , to produce a graph vector gi as follows:

gi =

Ngi∑
n=1

αs
n[hn; tn]

αs
n =

expβsn∑Ngi
j=1 exp(βsj)

βsn = (Wrrn)T tanh(Whhn + Wttn)

where (hn, rn, tn) = kn,Wh,Wr,Wt are weight matrices for head
entities, relations, and tail entities, respectively.

Essentially, a graph vector gi is a weighted sum of the head and tail
vector [hn; tn] of the triples contained in the graph.

Jun Gao June 21, 2018 21 / 29

Knowledge Aware Generator

Jun Gao June 21, 2018 22 / 29

Dynamic Graph Attention

Given the decoder state st , the dynamic graph attention mechanism
first attends on the knowledge graph vectors {g1, g2, ..., gNG

} to
compute the probability of using of each graph gi , which is defined as
below:

cgt =

NG∑
i=1

αg
tigi

αg
ti =

exp(βgti)∑NG
j=1 exp(βgti)

βgti = VT
b tanh(Wbst + Ubgi)

where Vb/Wb/Ub are parameters, and αg
ti is the probability of

choosing knowledge graph gi at step t. The graph context vector cgt
is a weighted sum of the graph vectors, and the weight measures the
association between the decoder’s state st and a graph vector gi .

Jun Gao June 21, 2018 23 / 29

Dynamic Graph Attention

The model then attends on the knowledge triple vectors
K(gi) = {k1, k2, ...kNgi

} within each graph gi to calculate the
probability of selecting a triple for word generation, formally as
follows:

ckt =

NG∑
i=1

Ngi∑
j=1

αg
tiα

k
tjki

αk
tj =

exp(βkti)∑Ngi

n=1 exp(βktn)

βktj = kTj Wcst

where βktj can be viewed as the similarity between each knowledge

triple vector kj and the decoder state st , αk
tj is the probability pf

choosing triple τj from all triples in graph gi at step t.

Jun Gao June 21, 2018 24 / 29

Knowledge Aware Generator

Finally, the knowledge aware generator selects a generic word or an
entity word with the following distributions:

at = [st ; ct ; c
g
t ; ckt]

γt = sigmoid(VT
o αt)

Pc(yt = wc) = softmax(Woat)

Pe(yt = we) = αg
tiα

k
tj

yt ∼ ot = P(yt) = [(1− γt)Pg (yt = wc); γtPe(yt = we)]

where γt ∈ [0, 1] is a scalar to balance the choice between an entity
word we and a generic word wc , Pc/Pe is the distribution over
generic/entity words respectively.The final distribution P(yt) is a
concatenation of two disributions.

Jun Gao June 21, 2018 25 / 29

Loss Function

The loss function is cross entropy between the predicted token
distribution ot and the reference distribution pt in the training
corpus.The loss on one sample
< X ,Y > (X = x1x2...xn,Y = y1y2...ym) is defined as:

L(θ) = −
m∑
t=1

pt log(ot)−
m∑
t=1

(qt log(γt) + (1− qt)log(1− γt))

where γt is the probability of selecting an entity word or a generic
word, and qt ∈ {0, 1} is the true choice of an entity word or a generic
word in Y. The second term is used to supervise the probability of
selecting an entity word or a generic word.

Jun Gao June 21, 2018 26 / 29

Manual evaluation

Jun Gao June 21, 2018 27 / 29

Sample responses

Jun Gao June 21, 2018 28 / 29

Conclusion

This paper presents a commonsense knowledge aware conversational
model (CCM) to demonstrate how commonsense knowledge can
facilitate language understanding and generation in open-domain
conversational systems.

Instead of treating knowledge triples (or entities) separately and
independently, we devise static and dynamic graph attention
mechanisms to treat the knowledge triples as a graph, from which we
can better interpret the semantics of an entity from its neighboring
entities and relations.

Jun Gao June 21, 2018 29 / 29

